Цитоскелет растительной клетки. Функции цитоскелета. Бактериальные гомологи актина

ЦИТОСКЕЛЕТ

Цитоскелет представляет собой сложную динамичную систему микротрубочек, микрофиламентов, промежуточных филаментов и микротрабекул. Указанные компоненты цитоскелета являются немем-" бранными органеллами; каждый из них образует в клетке трехмерную сеть с характерным распределением, которая взаимодействует с сетями из других компонентов. Они входят также в состав ряда других более сложно организованных органелл (ресничек, жгутиков, микроворсинок, клеточного центра) и клеточных соединений (десмосом, полудесмосом, опоясывающих десмосом).

Основные функции цитоскелета:

1 поддержание и изменение формы клетки;

2 распределение и перемещение компонентов клетки;

3 транспорт веществ в клетку и из нее;

4 обеспечение подвижности клетки;

5участие в межклеточных, соединениях.

Микротрубочки

Микротрубочки, - наиболее крупные компоненты цитоскелета. Они представляют с^бой полые цилиндрические образования, имеющие форму трубочек, длиной до нескольких микрометров (в жгутиках более 50 нм) диаметром около 24-25 нм, с толщиной стенки 5 нм и диамет­ром просвета 14-15 нм (рис. 3-14).

Стенка микротрубочки состоит из спиралевидно уложенных нитей - протофиламентов толщиной 5 нм (которым на поперечном разрезе со­ответствуют 13 субъединиц), образованных димерами из белковых моле­кул а~ и /3-тубулина.

Функции микротрубочек:

(1) поддержание формы и полярности клетки, распределения ее компонентов,

(2) обеспечение внутриклеточного транспорта,

(3) обеспечение движения ресничек, хромосом в митозе (формиру­ют ахроматиновое веретено, необходимое для клеточного деления),

(4) образование основы других органелл (центриолей, ресничек).

Расположение микротрубочек. Микротрубочки располагаются в цитоплазме в составе нескольких систем;

а) в виде отдельных элементов, разбросанных по всей цитоплазме и формирующих сети;

б) в пучках, где они связаны тонкими поперечными мостиками (в отростках нейронов, в составе митогяческого веретена, манжетки сперматиды, периферического "кольца" тромбоцитов);

в) частично сливаясь друг с другом с формированием пар, или ду­блетов (в аксонеме ресничек и жгутиков), и триплетов (в базальном тельце и центриоли).

Образование и разрушение микротрубочек. Микротрубочки пред­ставляют собой лабильную систему, в которой имеется равновесие меж­ду их постоянной сборкой и диссоциацией. У большинства микро­трубочек один конец (обозначаемый как "-") закреплен, а другой ("+") свободен и участвует в их удлинении или деполимеризации. Структура­ми, обеспечивающими образование микротрубочек, служат особые мел- I кие сферические тельца - сателлиты (от англ, satellite - спутник), отче- { го последние называют центрами организации микротрубочек (ЦОМТ). . Сателлиты содержатся в базалъных тельцах ресничек и клеточном цен- I тре (см. рис. 3-15 и 3-16). После полного разрушения микротрубочек ] в цитоплазме они отрастают от клеточного центра со скоростью около 1 мкм/мин., а их сеть вновь восстанавливается менее, чем за полтора часа. К ЦОМТ относят также и центромеры хромосом.

Связь микротрубочек с другими структурами клетки и между со­бой осуществляется посредством ряда белков, выполняющих различные функции. (1) Микротрубочки с помощью вспомогательных белков при­креплены к другим клеточным компонентам. (2) По своей длине микро­трубочки образуют многочисленные боковые выросты (которые состоят из белков, ассоциированных с микротрубочками) длиной до нескольких десятков нанометров. Благодаря тому, что такие белки последовательно и обратимо связываются с органеллами, транспортными пузырьками, секреторными гранулами и другими образованиями, микротрубочки (ко- ] торые сами не обладают сократимостью) обеспечивают перемещение указанных структур по цитоплазме. (3) Некоторые белки, ассоцииро­ванные с микротрубочками, стабилизируют их структуру, а связываясь с их свободными краями, препятствуют деполимеризации.

Угнетение самосборки микротрубочек посредством ряда веществ, являющихся ингибиторами митоза (колхицин, винбластин, винкрис-тин), вызывает избирательную гибель быстроделящихся клеток. Поэто­му некоторые из таких веществ успешно используются для химиотера-

пии опухолей. Блокаторы микротрубочек нарушают также транспортные процессы в цитоплазме, в частности, секрецию, аксонный транспорт в нейронах. Разрушение микрогрубочек приводит к изменениям формы клетки и дезорганизации ее структуры и распределения органелл.

Клеточный центр (цитоцентр)

Клеточный центр образован двумя полыми цилиндрическими структурами длиной 0.3-0.5 <мкм и диаметром 0.15-0.2 мкм - центриоля-ми, которые располагются вблизи друг друга во взаимно перпендикуляр­ных плоскостях (рис. 3-15). Каждая центриоль состоит из 9 триплетов частично слившихся микротрубочек (А, В и С), связанных поперечны­ми белковыми мостиками ("ручками"). В центральной части центриоли микротрубочки отсутствуют (по некоторым данным, здесь имеется осо­бая центральная нить), что описывается общей формулой (9*3) + 0. Каждый триплет центриоли связан со сферическими тельцами диамет­ром 75 нм - сателлитами; расходящиеся от них микротрубочки образу­ют центросферу.

В неделящейся клетке выявляется одна пара центриолей (диплосо-ма), которая обычно располагается вблизи ядра. Перед делением в S-ne-риоде интерфазы происходит дупликация центриолей пары, причем под прямым углом к каждой зрелой (материнской) центриоли формируется новая (дочерняя), незрелая процентриоль, в которой вначале имеются лишь 9 единичных микротрубочек, позднее превращающихся в трипле­ты. Пары центриолей далее расходятся к полюсам клетки, а во время митоза они служат центрами образования микротрубочек ахроматина-вого веретена деления.

Реснички и жгутики

Реснички и жгутики - органеллы специального значения, участ­вующие в процессах движения, - представляют собой выросты цитоплаз­мы, основу которых составляет каркас из микротрубочек, называемый осевой нитью, или аксонемой (от греч. axis - ось и пета - нить). Длина ресничек равна 2-10 мкм, а их количество на поверхности одной рес­нитчатой клетки может достигать нескольких сотен. В единственном типе клеток человека, имеющих жгутик - спермиях - содержится только по одному жгутику длиной 50-70 мкм.

Аксонема образована 9 периферическими парами микротрубочек и одной центрально расположенной парой; такое строение описывается формулой (9 х 2) + 2 (рис. 3-16). Внутри каждой периферической пары за счет частичного слияния микротрубочек одна из них (А) полная, а вторая (В) - неполная (2-3 димера общие с микротрубочкой А).

Центральная пара микротрубочек окружена центральной оболоч­кой, от которой к периферическим дублетам расходятся радиальные спицы. Периферические дублеты связаны друг с другом мостиками нек-сина, а от микротрубочки А к микротрубочке В соседнего дублета от­ходят "ручки" из белка динеина (см. рис. 3-16), который обладает ак­тивностью АТФазы.

Биение реснички и жгутика обусловлено скольжением соседних дублетов в аксонеме, которое опосредуется движением динеиновых ру­чек. Мутации, вызывающие изменения белков, входящих в состав рес­ничек и жгутиков, приводят к различным нарушениям функции соответ­ствующих клеток. При синдроме Картагенера (синдроме неподвижных, ресничек), обычно обусловленном отсутствием динеиновых ручек, боль­ные страдают хроническими заболеваниями дыхательной системы (свя­занными с нарушением функции очищения поверхности респираторного эпителия) и бесплодием (вследствие неподвижности спермиев).

Базальное тельце, по своему строению сходное с центриолью, ле­жит в основании каждой реснички или жгутика. На уровне апикального конца тельца микротрубочка С триплета заканчивается, а микротру­бочки А и В продолжаются в соответствующие микротрубочки аксоне-мы реснички или жгутика. При развитии ресничек или жгутика базаль-ное тельце играет роль матрицы, на которой поисходит сборка компо­нентов аксонемы.

Микрофиламенты

Микрофиламенты - тонкие белковые нити диаметром 5-7 ни, лежащие в цитоплазме поодиночке, в виде сетей или пучками. В ске­летной мышце тонкие Микрофиламенты образуют упорядоченные пучки, взаимодействуя с более толстыми миозиновыми филаментами.

Кортикальная (терминальная) сеть - зона сгущения микрофила-ментов под плазмолеммой, характерная для большинства клеток. В этой сети Микрофиламенты переплетены между собой и "сшиты" друг с другом с помощью особых белков, самым распространенным из ко­торых является филамин. Кортикальная сеть препятствует резкой и вне­запной деформации клетки при механических воздействиях и обеспе­чивает плавные изменения ее формы путем перестройки, которая облег­чается актин-растворяющими (преобразующими) ферментами.

Прикрепление микрофиламентов к плазмолемме осуществляется благодаря их связи с ее интегральными ("якорными") белками (интег-ринами) - непосредственно или через ряд промежуточных белков - та­лин, винкулин и сс-актинин (см. рис. 10-9). Помимо этого, актиновые микрофиламенты прикрепляются к трансмембранным белкам в особых участках плазмолеммы, называемых адгезионными соединениями, или фокальными контактами, которые связывают клетки друг с другом или клетки с компонентами межклеточного вещества.

Актин - основной белок микрофиламентов - встречается в моно­мерной форме (G -, или глобулярный актин), которая способна в при­сутствии цАМФ и Са 2+ полимеризоваться в длинные цепи (F -, или фибриллярный актин). Обычно молекула актина имеет вид двух спи­рально скрученных нитей (см. рис. 10-9 и 13-5).

В микрофиламентах актин взаимодействует с рядом актин-связы-вающих белков (до нескольких десятков видов), выполняющих различ­ные функции. Некоторые из них регулируют степень полимеризации актина, другие (например, филамин в кортикальной сети или фимбрин и виллин в микроворсинке) способствуют связыванию отдельных микро­филаментов в системы. В немышечных клетках на актин приходится примерно 5-10% содержания белка, лишь около половины его организо­вано в филаменты. Микрофиламенты более устойчивы к физическим и химическим воздействиям, чем микротрубочки.

Функции микрофиламентов:

(1) обеспечение сократимости мышечных клеток (при взаимодей­ствии с миозином);

(2) обеспечение функций, связанных с кортикальным слоем цито­плазмы и плазмолеммой (экзо- и эндоцитоз, образование псевдоподий и миграция клетки);

(3) перемещение внутри цитоплазмы ореанелл, транспортных пу­зырьков и других структур благодаря взаимодействию с некоторыми белками (минимиозином), связанными с поверхностью этих структур;

(4) обеспечение определенной жесткости клетки за счет наличия кортикальной сети, которая препятствует действию деформаций, но са­ма, перестраиваясь, способствует изменениям клеточной формы;

(5) формирование сократимой перетяжки при цитотомии, завер­шающей клеточное деление;

(6) образование основы ("каркаса") некоторых органелл (микро-ворсинок, стереоцилий).

(7) участие в организации структуры межклеточных соединений (опоясывающих десмосом).

Микроворсинки - пальцевидные выросты цитоплазмы клетки ди­аметром 0.1 мкм и длиной 1 мкм, основу которых образуют актиновые микрофиламенты. Микроворсинки обеспечивают многократное увеличе­ние площади поверхности клетки, на которой происходит расщепление и всасывание веществ. На.апикальной поверхности некоторых клеток, активно участвующих в указанных процессах (в эпителии тонкой киш­ки и почечных канальцев) имеется до нескольких тысяч микроворси­нок, образующих в совокупности щеточную каемку.

Каркас каждой микроворсинки образован пучком, содержащим около 40 микрофиламентов, лежащих вдоль ее длинной оси (рис. 3-17). В апикальной части микроворсинки этот пучок закреплен в аморфном веществе. Его жесткость обусловлена поперечными сшивками из бел­ков фимбрина и виллина, изнутри пучок прикреплен к плазмолемме Микроворсинки особыми белковыми мостиками (молекулами минимио- З ина). У основания микроворсинки микрофиламенты пучка вплетается в терминальную сеть, среди элементов которой имеются миозиновые филаменты. Взаимодействие актиновых и миозиновых филаментов тер­минальной сети, вероятно, обусловливает тонус и конфигурацию микро­ворсинки.

Стереоцилии - видоизмененные длинные (в некоторых клетках -ветвящиеся) микроворсинки - выявляются значительно реже, чем мик­роворсинки и, подобно последним, содержат пучок микрофиламентов.

Цитоскелет образован белками, выделяют несколько основных систем, называемых либо по основным структурным элементам, заметным при электронно-микроскопических исследованиях (микрофиламенты , промежуточные филаменты , микротрубочки), либо по основным белкам, входящим в их состав (актин -миозиновая система, кератины , тубулин -динеиновая система).

Энциклопедичный YouTube

    1 / 5

    ✪ Элементы цитоскелета и белковый транспорт

    ✪ Цитология. Лекция 4. Цитоскелет. Окштейн И.Л.

    ✪ Цитоскелет клеток - Иван Воробьев

    ✪ Цитоскелет | Строение клетки | Биология (часть 6)

    ✪ Inner_Life_Of_A_Cell_-_Full_Version.mkv

    Субтитры

Цитоскелет эукариот

Актиновые филаменты (микрофиламенты)

Порядка 7 нм в диаметре, микрофиламенты представляют собой две цепочки из мономеров актина , закрученные спиралью. В основном они сконцентрированы у внешней мембраны клетки, так как отвечают за форму клетки и способны образовывать выступы на поверхности клетки (псевдоподии и микроворсинки). Также они участвуют в межклеточном взаимодействии (образовании адгезивных контактов), передаче сигналов и, вместе с миозином - в мышечном сокращении. С помощью цитоплазматических миозинов по микрофиламентам может осуществляться везикулярный транспорт.

Промежуточные филаменты

Цитоскелет прокариот

Долгое время считалось, что цитоскелетом обладают только эукариоты . Однако с выходом в 2001 году статьи Jones и соавт. (PMID 11290328), описывающей роль бактериальных гомологов актина в клетках Bacillus subtilis , начался период активного изучения элементов бактериального цитоскелета. К настоящему времени найдены бактериальные гомологи всех трех типов элементов цитоскелета эукариот - тубулина , актина и промежуточных филаментов . Также было установлено, что как минимум одна группа белков бактериального цитоскелета, MinD/ParA, не имеет эукариотических аналогов.

Бактериальные гомологи актина

К наиболее изученным актиноподобным компонентам цитоскелета относятся MreB, ParM и MamK.

MreB и его гомологи

Белки MreB и его гомологи являются актиноподобными компонентами цитоскелета бактерий, играющими важную роль в поддержании формы клетки, сегрегации хромосом и организации мембранных структур. Некоторые виды бактерий, такие как Escherichia coli , имеют только один белок MreB, тогда как другие могут иметь 2 и более MreB-подобных белков. Примером последних служит бактерия Bacillus subtilis , у которой были обнаружены белки MreB, Mbl (M reB -l ike) и MreBH (MreB h omolog).

В геномах E. coli и B. subtilis ген, отвечающий за синтез MreB, находится в одном опероне с генами белков MreC и MreD. Мутации, подавляющие экспрессию данного оперона, приводят к образованию клеток сферической формы с пониженной жизнеспособностью.

Субъединицы белка MreB образуют филаменты, обвивающие палочковидную бактериальную клетку. Они располагаются на внутренней поверхности цитоплазматической мембраны. Филаменты, образуемые MreB, динамичны, постоянно претерпевают полимеризацию и деполимеризацию. Непосредственно перед делением клетки MreB концентрируется в области, в которой будет формироваться перетяжка. Считается, что функцией MreB также является координация синтеза муреина - полимера клеточной стенки.

Гены, отвечающие за синтез гомологов MreB, были обнаружены только у палочковидных бактерий и не были найдены у кокков.

ParM

Белок ParM присутствует в клетках, содержащих малокопийные плазмиды. Его функция заключается в разведении плазмид по полюсам клетки. При этом субъединицы белка формируют филаменты, вытянутые вдоль большой оси палочковидной клетки.

Филамент по своей структуре представляет собой двойную спираль. Рост филаментов, образуемых ParM, возможен с обоих концов, в отличие от актиновых филаментов, растущих только на ±полюсе.

MamK

MamK - это актиноподобный белок Magnetospirillum magneticum , отвечающий за правильное расположение магнитосом. Магнитосомы представляют собой впячивания цитоплазматической мембраны, окружающие частички железа. Филамент MamK выполняет роль направляющей, вдоль которой, одна за другой, располагаются магнитосомы. В отсутствие белка MamK магнитосомы располагаются беспорядочно по поверхности клетки.

Гомологи тубулина

В настоящее время у прокариот найдены 2 гомолога тубулина: FtsZ и BtubA/B. Как и эукариотический тубулин, эти белки обладают ГТФазной активностью.

FtsZ

Белок FtsZ чрезвычайно важен для клеточного деления бактерий, он найден практически у всех эубактерий и архей. Также гомологи этого белка были обнаружены в пластидах эукариот, что является ещё одним подтверждением их симбиотического происхождения .

FtsZ формирует так называемое Z-кольцо, выполняющее роль каркаса для дополнительных белков клеточного деления. Вместе они представляют собой структуру, ответственную за образование перетяжки (септы) .

BtubA/B

В отличие от широко распространенного FtsZ, эти белки обнаружены только у бактерий рода Prosthecobacter . Они более близки к тубулину по своему строению, чем FtsZ.

Кресцентин, гомолог белков промежуточных филаментов

Белок был найден в клетках Caulobacter crescentus . Его функцией является придание клеткам C. crescentus формы вибриона. В случае отсутствия экспрессии гена кресцентина клетки C. crescentus приобретают форму палочки. Интересно, что клетки двойных мутантов, кресцентин − и MreB − , имеют сферическую форму.

MinD и ParA

Эти белки не имеют гомологов среди эукариот.

MinD отвечает за положение сайта деления у бактерий и пластид. ParA участвует в разделении ДНК по дочерним клеткам.

См. также

Цитоскелет

Цитоскелет эукариот. Актиновые микрофиламенты окрашены в красный, микротрубочки - в зелёный, ядра клеток - в голубой цвет.

Цитоскеле́т - это клеточный каркас или скелет, находящийся в цитоплазме живой клетки . Он присутствует во всех клетках эукариот , причем в клетках прокариот обнаружены гомологи всех белков цитоскелета эукариот. Цитоскелет - динамичная, изменяющаяся структура, в функции которой входит поддержание и адаптация формы клетки ко внешним воздействиям, экзо- и эндоцитоз, обеспечение движения клетки как целого, активный внутриклеточный транспорт и клеточное деление.

Кератиновые промежуточные филаменты в клетке.

Цитоскелет образован белками, выделяют несколько основных систем, называемых либо по основным структурным элементам, заметным при электронно-микроскопических исследованиях (микрофиламенты , промежуточные филаменты , микротрубочки), либо по основным белкам, входящим в их состав (актин -миозиновая система, кератины , тубулин -динеиновая система).

Цитоскелет эукариот

Цитоскелет прокариот

Долгое время считалось, что цитоскелетом обладают только эукариоты . Однако с выходом в 2001 году статьи Jones и соавт. (PMID: 11290328), описывающей роль бактериальных гомологов актина в клетках Bacillus subtilis , начался период активного изучения элементов бактериального цитоскелета. К настоящему времени найдены бактериальные гомологи всех трех типов элементов цитоскелета эукариот - тубулина , актина и промежуточных филаментов . Также было установлено, что как минимум одна группа белков бактериального цитоскелета, MinD/ParA, не имеет эукариотических аналогов.

Бактериальные гомологи актина

К наиболее изученным актиноподобным компонентам цитоскелета относятся MreB, ParM и MamK.

MreB и его гомологи

Белки MreB и его гомологи являются актиноподобными компонентами цитоскелета бактерий, играющими важную роль в поддержании формы клетки, сегрегации хромосом и организации мембранных структур. Некоторые виды бактерий, такие как Escherichia coli , имеют только один белок MreB, тогда как другие могут иметь 2 и более MreB-подобных белков. Примером последних служит бактерия Bacillus subtilis , у которой были обнаружены белки MreB, Mbl (M reB -l ike) и MreBH (MreB h omolog).

В геномах E. coli и B. subtilis ген, отвечающий за синтез MreB, находится в одном опероне с генами белков MreC и MreD. Мутации, подавляющие экспрессию данного оперона, приводят к образованию клеток сферической формы с пониженной жизнеспособностью.

Субъединицы белка MreB образуют филаменты, обвивающие палочковидную бактериальную клетку. Они располагаются на внутренней поверхности цитоплазматической мембраны. Филаменты, образуемые MreB, динамичны, постоянно претерпевают полимеризацию и деполимеризацию. Непосредственно перед делением клетки MreB концентрируется в области, в которой будет формироваться перетяжка. Считается, что функцией MreB также является координация синтеза муреина - полимера клеточной стенки.

Гены, отвечающие за синтез гомологов MreB, были обнаружены только у палочковидных бактерий и не были найдены у кокков.

ParM

Белок ParM присутствует в клетках, содержащих малокопийные плазмиды. Его функция заключается в разведении плазмид по полюсам клетки. При этом субъединицы белка формируют филаменты, вытянутые вдоль большой оси палочковидной клетки.

Филамент по своей структуре представляет собой двойную спираль. Рост филаментов, образуемых ParM, возможен с обоих концов, в отличие от актиновых филаментов, растущих только на ±полюсе.

MamK

MamK - это актиноподобный белок Magnetospirillum magneticum , отвечающий за правильное расположение магнитосом. Магнитосомы представляют собой впячивания цитоплазматической мембраны, окружающие частички железа. Филамент MamK выполняет роль направляющей, вдоль которой, одна за другой, располагаются магнитосомы. В отсутствие белка MamK магнитосомы располагаются беспорядочно по поверхности клетки.

Гомологи тубулина

В настоящее время у прокариот найдены 2 гомолога тубулина: FtsZ и BtubA/B. Как и эукариотический тубулин, эти белки обладают ГТФазной активностью.

FtsZ

Белок FtsZ чрезвычайно важен для клеточного деления бактерий, он найден практически у всех эубактерий и архей. Также гомологи этого белка были обнаружены в пластидах эукариот, что является ещё одним подтверждением их симбиотического происхождения .

FtsZ формирует так называемое Z-кольцо, выполняющее роль каркаса для дополнительных белков клеточного деления. Вместе они представляют собой структуру, ответственную за образование перетяжки (септы) .

BtubA/B

В отличие от широко распространенного FtsZ, эти белки обнаружены только у бактерий рода Prosthecobacter . Они более близки к тубулину по своему строению, чем FtsZ.

Кресцентин, гомолог белков промежуточных филаментов

Белок был найден в клетках Caulobacter crescentus . Его функцией является придание клеткам C. crescentus формы вибриона. В случае отсутствия экспрессии гена кресцентина клетки C. crescentus приобретают форму палочки. Интересно, что клетки двойных мутантов, кресцентин − и MreB − , имеют сферическую форму.

MinD и ParA

Эти белки не имеют гомологов среди эукариот.

MinD отвечает за положение сайта деления у бактерий и пластид. ParA участвует в разделении ДНК по дочерним клеткам.

См. также

Примечания

К структурам цитоскелета относят микротрубочки, тонкие микрофиламенты, промежуточные филаменты (микрофибриллы).

Они состоят из белков и не имеют мембран. Эти органеллы выполняют не только опорно-каркасную и формообразующую, но и множество других функций.

Микротрубочки . Они встречаются в цитоплазме практически всех клеток многоклеточных организмов, кроме прокариот. Микротрубочки исследуют при электронной микроскопии. Микротрубочки располагают отдельно в виде самостоятельной структуры или формируют сложные структуры центриолей, ресничек, жгутиков, веретена деления.

Органелла представляет собой прямую, не ветвящуюся, полую структуру. В цитоплазме большинства клеток микротрубочки постоянно подвергаются сборке и разборке. В результате этого динамического равновесия поддерживается вся система распределения органелл цитоплазмы, их положение в клетке, форма клетки, перемещение в ней веществ. Если вызвать в клетке деполимеризацию микротрубочек, введя колхицин или значительно снизив температуру, то форма клети сильно изменится и нарушится распределение в ней транспортных потоков. Следовательно, микротрубочки цитоплазмы формируют эластичный, но вполне устойчивый внутриклеточный скелет - цитоскелет.

При световой микроскопии скопления микротрубочек можно выявить с помощью специфических антител к тубулину. Они формируют скопление вблизи клеточного центра, участвуя в формировании центросферы.

Микротрубочки представляют собой полые цилиндры с общим диаметром 24 нм, внутренний просвет имеет ширину 15 нм, а толщина стенки - 5 нм. Микротрубочки состоят из глобулярных белков - тубулинов (13 на поперечном срезе). Глобулы тубулинов имеют диаметр около 5 нм, молекулярную массу 60 · 10 3 и коэффициент седиментации 3…4 S. Тубулины подразделяют на альфа — и бета-тубулины. Тубулины образуют димер - белок, состоящий из двух глобул тубулинов. Димеры соединяются в виде цепочки, которая формирует спираль. Тубулины могут быть в двух формах: глобулярной (диспергированной в матриксе) и фибриллярной (в виде микротрубочек). В составе тубулинов всегда обнаруживают значительное количество гуаниндифосфата (ГДФ).

Микротрубочки формируются в центрах организации микротрубочек, или микротрубочкоорганизующих центрах: центриолях, базальных тельцах ресничек и жгутиков, зонах кинетохоров митотических хромосом.

Образование микротрубочек происходит путем самосборки. Для этого необходимы: глобулы тубулинов, ГТФ (гуанинтрифосфат), белки, стимулирующие полимеризацию, высокое содержание ионов Mg 2+ и отсутствие ионов Са 2+ . Если эти условия соблюдены, то образование новых микротрубочек происходит даже в пробирке (in vitro).

В начале полимеризации органеллы происходит нуклеация, формируется «затравка» из очень короткой цепи тубулинов в три ряда, затем к обоим концам начинают прикрепляться новые тубулины, и размер микротрубочки увеличивается.

Микротрубочки имеют положительный и отрицательный полюса. Со стороны отрицательного полюса, лежащего ближе к организатору микротрубочек, тубулины полимеризуются медленнее и легко распадаются до глобулярных частиц. Со стороны положительного полюса, направленного к периферии клетки, полимеризация идет быстрее.

Микротрубочки быстро распадаются на глобулярные частицы, взвешенные в гиалоплазме. Распад органеллы можно спровоцировать, увеличив внутри клетки содержание ионов кальция.

Микротрубочки формируют центриоли, несут опорно-каркасную функцию, контролируют транспортные потоки в цитоплазме, участвуя в циклозе, обеспечивают каркасную основу ресничек и жгутиков, формируют веретено деления в митозе и мейозе и др.

Создавая внутриклеточный скелет, микротрубочки могут быть факторами ориентированного движения клетки в целом и ее внутриклеточных компонентов, задавать своим расположением векторы для направленных потоков разных веществ и для перемещения крупных структур.

При разрушении микротрубочек фибробластов в культуре форма клеток из вытянутой становилась округлой или многоугольной (полигональной), их движения стали хаотичными, то есть эти органеллы контролируют направление движения клетки.

Разрушение микротрубочек колхицином нарушает транспорт веществ в аксонах нервных клеток, приводит к блокаде секреции и т. д. По цитоплазматическим интерфазным микротрубочкам, как по рельсам, могут передвигаться различные мелкие вакуоли, например синаптические пузырьки, содержащие нейромедиаторы, в аксоне нервной клетки или митохондрии. Эти перемещения возможны из-за связи микротрубочек со специальными белками - транслокаторами (динеинами и кинезинами), которые, в свою очередь, связываются с транспортируемыми структурами.

С тубулинами микротрубочек связан белок кинезин, обладающий АТФазной активностью и обеспечивающий транспорт органелл и других структур от центра к периферии (от отрицательного к положительному полюсу микротрубочки). Подобную функцию, но в противоположном направлении, выполняет цитоплазматический динеин.

За счет этого микротрубочки могут контролировать транспортные потоки и распределение структур в клетке.

Если оба конца микротрубочки «закрыты» (копированы), то есть связаны, например, с клеточным центром и наружной мембраной, то микротрубочки не распадаются и могут метилироваться (присоединять метальные группы), приобретая устойчивую форму. Такие метилированные, стабильные микротрубочки могут выполнять специализированные функции: служить основой ресничек, жгутиков и клеточного центра. В нейроне они образуют органеллу специального назначения - нейротубулу.

Нейротубулы выполняют разнообразные функции: опорно-каркасную, обеспечивают транспорт веществ (аксоток), контролируют выделение медиаторов, регулируют процессы регенерации в поврежденном нервном волокне и др.

Копировать концы микротрубочек могут белки микротрубочкоорганизующих центров (МОТЦ), или центров организации микротрубочек (ЦОМТ).

По бокам к микротрубочкам могут прикрепляться низкомолекулярные т-белки и высокомолекулярные MAP (microtubule associated proteins). Эти белки формируют «шипы» на микротрубочках, связывают элементы цитоскелета между собой, стабилизируют микротрубочки, могут находиться на конце микротрубочки, прикрывать его (кэпировать) и этим предотвращать их распад (деполимеризацию).

Микротрубочки являются составной частью клеточного центра, ресничек и жгутиков. Система микротрубочек развивается вместе с центриолью, в которой происходит начальная полимеризация тубулинов и рост микротрубочек цитоскелета.

Промежуточный филамент . Это нити с поперечным диаметром 8…11 нм. Их скопления формируют более толстые структуры - микрофибриллы, которые в нейронах участвуют в образовании нейрофибрилл. Они обеспечивают опорно-каркасную функцию. Промежуточные филаменты лежат в центральных областях клеток в виде трехмерной сети. На периферии филаменты нередко объединяются в пучки, прикрепляются к внутренней поверхности десмосом и полудесмосом. Промежуточные филаменты придают клеткам упругость и жесткость. Присоединяясь с помощью десмосом к подобным участкам соседних клеток, они формируют обширную сеть - каркас, который соединяет клетки в механически прочную и в то же время гибкую и эластичную систему. Это особенно важно в эпителиальных тканях, часто подвергающихся механическим воздействиям.

Промежуточные филаменты - неветвящиеся, располагающиеся пупками нити (микрофибриллы). Эти фибриллярные структуры относительно стабильны по сравнению с микротрубочками и тонкими микрофиламентами. Они состоят из фибриллярных белков-мономеров. Эти фибриллярные белки в виде α-спирали переплетаются между собой и поэтому органелла напоминает канат. Особенно хорошо развиты промежуточные филаменты в клетках, которые испытывают значительные механические нагрузки (эпителиальные, мышечные ткани).

Микрофибриллы являются тканеспецифичными, так как их образуют фибриллярные белки, различные по составу в зависимости от происхождения клеток и тканей. Десмины образуют промежуточные филаменты мышечных тканей мезодермального происхождения; виментины - клеток мезенхимального происхождения (ткани внутренней среды); цитокератины - эпителиальных клеток; белки нейрофибриллярного триплета - нейронов; глиальный фибриллярный кислый белок - астроцитов.

Особенностью промежуточных филаментов является то, что образующие их фибриллярные белки комплементарно соединяются друг с другом: кислые цитокератины с цитокератинами, имеющими основные свойства. Три мономера цитокератинов объединяются между собой в виде α-спирали. Каждая такая нить имеет толщину около 2 нм. Эти тонкие нити соединяются в более толстые образования - полые трубки с поперечным сечением 8…11 нм. В некоторых участках филаменты разволокняются, что облегчает связь нитей в органелле. Нити в таком филаменте свернуты в слабо закрученную спираль. Промежуточные филаменты могут формировать крупные комплексы (микрофибриллы).

Промежуточные филаменты в эпителии называются тонофиламентами, а микрофибриллы - тонофибриллами.

В отличие от микротрубочек промежуточные филаменты не имеют полярности и являются стабильными компонентами цитоскелета. На внутренней поверхности ядерной оболочки имеются структуры, аналогичные промежуточным филаментам. Они образованы белками ламинами и участвуют в формировании ядерной пластинки. К ним прикрепляется хроматин.

При помощи иммуноморфологических методов определяют тканевое происхождение тех или иных опухолей именно по белкам их промежуточных филаментов, что очень важно для диагностики и правильного выбора типа химиотерапевтических противоопухолевых препаратов.

Химический состав и молекулярная масса белков промежуточных филаментов довольно разнообразны. Так, выявлено, что кислых цитокератинов около 15 видов. Примерно столько же и основных цитокератинов. Молекулярная масса основных цитокератинов колеблется от 50 000 до 70 000, кислых - от 40 000 до 60 000. Примерно 8 из цитокератинов входят в состав производных кожи (волосы, когти, рога, ногти и т. д.). Их распределение зависит от типа эпителия. В многослойном эпителии цитокератины различны в разных слоях эпителия и преобладание того или иного цитокератина является косвенным признаком степени дифференцировки кератиноцитов (клеток многослойного эпителия).

Промежуточные филаменты нервной клетки - нейрофиламенты у позвоночных сформированы белками NF-Z, NF-M, NF-H, которые значительно отличаются по молекулярной массе (от 57 до 150 кДа). Эти белки и промежуточные филаменты поддерживают форму тел и отростков клеток нервной ткани, а также фиксируют на поверхности белки ионных каналов.

При значительном повреждении клетки промежуточные филаменты формируют клубок - подвергаются коллапсу. В такой клубок погружаются поврежденные органеллы и другие макромолекулярные образования. Вероятно, это облегчает их последующий гидролиз (самопереваривание).

При регенерации сети промежуточных филаментов восстанавливаются от центральных участков клетки, от клеточного центра, что позволяет предполагать его роль как центра формирования не только микротрубочек, но и промежуточных филаментов.

Тонкие микрофиламенты . Представляют собой тонкие нити с поперечным диаметром около 6 нм. Микрофиламенты находятся практически во всех клетках и являются универсальными элементами цитоскелета. Концентрируются на периферии клетки, формируя так называемую «кортикальную» периферическую область клетки, а в толще цитоплазмы лежат в виде сети, отдельных волокон или в виде пучков. В кортикальном слое цитоплазмы тонкие микрофиламенты образуют сгущения под плазмолеммой в виде плотных пучков или слоев. В апикальной зоне эпителия такие сгущения называют кутикулой.

Тонкие микрофиламенты видны как плотно упакованные пучки, направляющиеся в клеточные отростки, где служат основой для их формирования (микроворсинки и стереоцилии).

Наряду с опорой микрофиламенты - это внутриклеточный сократительный аппарат, обеспечивающий не только подвижность клеток при активном амебовидном перемещении, но и при перемещении цитоплазмы, движении вакуолей, митохондрий, делении клетки.

Кроме того, актиновые микрофиламенты выполняют и каркасную функцию, соединяясь с рядом стабилизирующих белков, они могут образовывать временные или постоянные пучки или сети.

В большинстве клеток актины (основные белки тонких микрофиламентов) составляют около 5 % общего содержания белка. Выделяют пять форм актина (изоформ). Все изоформы близки по аминокислотным последовательностям, но строение и состав концевых участков полипептидных цепочек различные. Это приводит к различию в скорости полимеризации актина, что необходимо для двигательной активности клетки и скорости формирования выпячиваний и впячиваний клеточной мембраны.

Молекулы актина в тонких микрофиламентах закручены по а-спирали, располагаясь в виде двух цепочек. Такой актин называется F-актином. Как и тубулины микротрубочек, актиновые нити легко полимеризуются и вновь распадаются на отдельные глобулы. Диспергированный в гиалоплазме актин называют G-актином.

Тонкие микрофиламенты имеют отрицательный и положительный полюса. Область положительного полюса легче полимеризуется, а отрицательный полюс легче распадается.

Образование тонкого микрофиламента, как и микротрубочки, начинается с формирования тримера (нуклеация). Это цепочка из трех актинов. Затем к этому тримеру начинают присоединяться новые актины (элонгация) и длина тонкого филамента увеличивается. Выявлены белки, контролирующие эти процессы. Так, профиллин блокирует нуклеацию. Он присоединяется к активной зоне мономера и формирует димер, который не может связаться с другими белками - актинами. Фрагмин подавляет нуклеацию и элонгацию, также связывая концевые элементы цепочки.

С помощью опорно-каркасных белков микрофиламенты могут соединяться с клеточной мембраной - это α-актинин, талин, винкулин, спектрин, фрагмин, анкирин, адцуцин. Разнообразие сцепляющих белков обусловлено разными способами прикрепления микрофиламентов: параллельно мембране, в виде пучков (по типу копирования) и др.

Микрофиламенты сцепляются между собой с помощью белков фасцина, α-актинина, фимбрина, филамина, виллина. Эти белки могут связывать тонкие микрофиламенты в виде плотных (фимбрин) или рыхлых (α-актинин) пучков, сетей (филамин). Так, белок филамин, являясь еще и белком-стабилизатором тонких микрофиламентов, формирует сшивки в местах пересечения органелл. В результате образуются сети из сцепленных нитей. Если оба конца микрофиламентов сцеплены с мембраной или с какой-либо иной структурой (копированы), они не распадаются и становятся стабильными. Последующее метилирование предотвращает распад микрофиламентов.

Стабильные тонкие микрофиламенты характерны для мышечных тканей, где они называются тонкими миофиламентами. Совместно с миозинами они формируют специализированную органеллу мышечной ткани - миофибриллу. Белок тропомиозин стабилизирует тонкий миофиламент.

Гельзолин, виллин и фрагмин копируют положительный полюс тонкого микрофиламента. Акументин выполняет подобную функцию со стороны отрицательного полюса.

Тонкие микрофиламенты обеспечивают опорно-каркасную функцию, контролируют циклоз, участвуют в формировании адгезивных контактов (пояска сцепления или ленточной десмосомы). В поясках сцепления тонкие микрофиламенты лежат параллельно цитомембране вдоль адгезивного контакта. Они укрепляют данный контакт, связываясь также с элементами внутриклеточного цитоскелета.

Наряду с микротрубочками микрофиламенты контролируют направление транспортных потоков и распределение макромолекулярных образований, органелл. В циклозе важное значение имеет полярность тонких микрофиламентов, противоположная к микротрубочкам.

Микрофиламенты участвуют в движении клетки. Одним из ведущих факторов, обеспечивающих движение, является взаимодействие актина с толстыми микрофиламентами, содержащими миозины. В присутствии ионов кальция в поперечнополосатых мышцах это взаимодействие ведет к сокращению симпласта. В гладких миоцитах и немышечных клетках подобную роль играет взаимодействие с минимиозинами, а также способность актинов к быстрому распаду и полимеризации.

В результате перераспределения тонких микрофиламентов в кортикальной зоне клетка может формировать впячивания (псевдоподии, ламеллоподии). Это позволяет обеспечивать локальные движения и перемещения целой клетки. Подобный процесс лежит в основе фагоцитоза и экзоцитоза.

Если клетка находится в состоянии покоя, в условиях жидкой среды и отсутствия контактов с другими клетками, она отличается округлой формой и равномерной сетью тонких филаментов в цитоплазме. В процессе исследования движения клетки в культурах тканей доказано, что перемещение клетки, например фибробласга, начинается с формирования филоподии - нитчатого выроста цитоплазмы диаметром 0,3…0,5 мкм и длиной до 20 мкм. Затем образуются плоские пластинчатые выросты - ламеллоподии или выросты, напоминающие оборки - «рафлы». Ламеллоподии затем сливаются так, что образуется особая зона - ламеллярная цитоплазма, в которой почти нет органелл и рибосом, но много микрофиламентов. Если клетка равномерно распластана, то она отличается концентрацией органелл вокруг ядра, лежащего в центре. К наружи от органелл тонкие микрофиламенты формируют кольцо.

В процессе формирования ламеллоподий может активироваться движение клетки. Движение обусловлено преобладанием в одном из направлений адгезивных или так называемых хемотаксических факторов.

Хемотаксические факторы - это вещества, стимулирующие перемещение клеток в направлении их наибольшей концентрации. Начало перемещения сопровождается перераспределением органелл и других структур (поляризацией) клетки. Такая активированная к движению клетка отличается тем, что псевдоподии и ламеллярная цитоплазма сохраняются на одной из сторон клетки. Именно эта сторона клетки и есть направление ее дальнейшего перемещения. Боковые поверхности клетки остаются неактивными. Перемещающаяся поверхность взаимодействует с внеклеточными структурами с помощью точечных (фокальных) контактов. Тонкие филаменты распределены в виде пучков вдоль оси перемещения. Область ламеллоподии содержит многочисленные тонкие микрофиламенты и микротрубочки. С их помощью происходит транспорт элементов клеточной мембраны от полюса с малым содержанием хемотаксинов в полюс с их высокой концентрацией. В результате клетка подтягивается в направлении перемещения. В последующем цикл перемещения повторяется.

В течение цикла тонкие микрофиламенты и микротрубочки непрерывно перераспределяются. Сеть микрофиламентов крайне неустойчива и все время перестраивается. В клетке, свободно плавающей в межклеточном веществе, тонкие микрофиламенты располагаются диффузно. В покое тонкие актиновые микрофиламенты концентрируются в виде кольца, а часть из них лежит в виде радиальных пучков. Во время перемещения тонкие микрофиламенты распределяются вдоль основного направления движения. По ламеллярному краю видны отдельные волокна или их пучки, которые лежат параллельно поверхности клетки.

Перемещения клеток необходимы для нормального функционирования и развития тканей и органов. Так, процессы миграции обеспечивают развитие зародышевых листков, внезародышевых клеток, формирование центральной и периферической нервных систем. Без активных перемещений невозможны иммунные реакции, функционирование эпителиальных тканей и фибробластов, многие другие процессы.

Тонкие микрофиламенты являются опорой (основой) для микроворсинок и стереоцилий. В структуре этих специализированных образований тонкие филаменты располагаются в виде тесно лежащих пучков.

Толстые микрофиламенты . Они образованы белками миозинами (меромиозинами). Толстые микрофиламенты в поперечном сечении имеют диаметр 10…12 нм. Эти структуры находятся в мышечной ткани, обеспечивают мышечное сокращение при взаимодействии с актиновыми филаментами.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

1. Что является внутренней средой клетки? Как называется опорно-двигательный аппарат клетки, представленный сетью тончайших нитей и трубочек?

Внутренней средой клетки является гиалоплазма, а опорно-двигательным аппаратом клетки является цитоскелет.

2. Что представляет собой гиалоплазма? Каков ее химический состав? Какие функции она выполняет?

Гиалоплазма - внутренняя среда клетки, в которой размещаются все внутриклеточные структуры и протекают разнообразные процессы обмена веществ. Гиалоплазма представляет собой густой бесцветный вязкий раствор, содержание воды в котором составляет 70-90 %. В гиалоплазме содержится много белков, присутствуют углеводы, липиды и различные неорганические соединения. Здесь же в растворенном виде находятся аминокислоты, нуклеотиды и другие «строительные блоки» биополимеров, а также промежуточные продукты, образующиеся в ходе обмена веществ. Гиалоплазма объединяет все клеточные структуры и обеспечивает химическое взаимодействие между ними.

3. В чем заключается различие между понятиями «цитоплазма» и «гиалоплазма»?

Цитоплазма включает в себя гиалоплазму и все погружённые в неё органоиды, включения, цитоскелет.

4. Из чего состоит цитоскелет? Каковы его функции в клетке?

Цитоскелет (внутриклеточный цитоплазматический скелет) - составная часть цитоплазмы, ее механический каркас. Цитоскелет представляет собой сложную трехмерную сеть микрофиламентов и микротрубочек.

5. Чем микротрубочки отличаются от микрофиламентов?

Микрофиламенты - тонкие белковые волокна (фибриллы), состоящие из двух спирально закрученных одна вокруг другой нитей. Каждая нить возникает в результате полимеризации молекул белка актина. В клетке обнаруживаются также фибриллы другого важного белка - миозина. Миозиновые фибриллы вместе с актиновыми микрофиламентами образуют комплекс, способный сокращаться за счет использования энергии АТФ. Микротрубочки представляют собой тонкие полые неразветвленные трубочки, образованные молекулами белка тубулина.

6. В чем проявляется динамичность структурных элементов цитоскелета?

Элементы цитоскелета очень динамичны. В определенных участках клетки при изменении внешних и внутренних условий они могут распадаться и вновь собираться. Отдельные белковые молекулы, образующиеся при разборке микротрубочек и микрофиламентов, переходят в раствор в составе гиалоплазмы. При сборке элементов цитоскелета наблюдается обратный процесс.

7. Известно, что гиалоплазма может менять вязкость и текучесть, переходя из жидкого состояния в гелеобразное и наоборот. Предложите гипотезы, каким образом это может осуществляться.

Гиалоплазма может менять свои свойства под действием внешних и внутренних факторов: температура, концентрация веществ в клетке, кислотность. При этом наблюдается увеличение скорости распада элементов цитоскелета и гиалоплазма становится более жидкой. В обратном случае, когда увеличивается скорость синтеза элементов цитоскелета, гиалоплазма становится вязкой.