Мигалка из светодиода к телефону. Светодиодная мигалка на транзисторе. Описание работы светодиодной мигалки

Лишены возможности купить готовый мигающий светодиод, где внутрь колбы встроены необходимые элементы для осуществления нужной функции (осталось подключить батарейку) — попробуйте собрать авторскую схему. Понадобится немногое: рассчитать резистор светодиода, задающий совместно с конденсатором период колебаний в цепи, ограничить ток, выбрать тип ключа. По некоторым причинам экономика страны работает на добывающую отрасль, электроника закопана глубоко в землю. С элементной базой напряг.

Принцип действия светодиода

Подключая светодиод, узнайте минимум теории — портал ВашТехник готов помочь. Район p-n перехода за счет существования дырочной и электронной проводимости образует зону несвойственных толще основного кристалла энергетических уровней. Рекомбинируя, носители заряда высвобождают энергию, если величина равна кванту света, спай двух материалов начинает лучиться. Оттенок определен некоторыми величинами, соотношение выглядит так:

E = h c / λ; h = 6,6 х 10-34 – постоянная Планка, с = 3 х 108 – скорость света, греческой буквой лямбда обозначается длина волны (м).

Из утверждения следует: может быть создан диод, где разница энергетических уровней присутствует. Так изготавливаются светодиоды. В зависимости от разницы уровней, цвет синий, красный, зелёный. Редкие светодиоды обладают одинаковым КПД. Слабыми считают синие, которые исторически появились последними. КПД светодиодов сравнительно мал (для полупроводниковой техники), редко достигает 45%. Удельное превращение электрической энергии в полезную световую просто потрясающее. Каждый Вт энергии дает фотонов в 6-7 раз больше, нежели спираль накала в эквивалентных условиях потребления. Объясняет, почему светодиоды сегодня занимают прочную позицию в осветительной технике.

Создание мигалки на основе полупроводниковых элементов несравненно проще. Хватит сравнительно малых напряжений, схема начнет работать. Остальное сводится к правильному подбору ключевых и пассивных элементов для создания пилообразного или импульсного напряжения нужной конфигурации:

  1. Амплитуда.
  2. Скважность.
  3. Частота следования.

Очевидно, подключение светодиода к сети 230 вольт выглядит негодной идеей. Присутствуют подобные схемы, но заставить мигать сложно, элементная база отсутствует. Светодиоды работают от гораздо более низких питающих напряжений. Самыми доступными считаются:

  • Напряжение +5 В присутствует в устройствах заряда телефонных аккумуляторов, iPad и других гаджетов. Правда, выходной ток невелик, и не нужно. Вдобавок, +5 В нетрудно найти на шине блока питания персонального компьютера. С ограничением тока проблемы устраним. Провод красного цвета, землю ищите на черном.
  • Напряжение +7…+9 Встречается на зарядных устройствах ручных радиостанций, в обиходе называемых рациями. Великое множество фирм, у каждой стандарты. Здесь бессильные дать конкретные рекомендации. Рации чаще выходят из строя в силу особенностей использования, лишние зарядные устройства обычно можно достать сравнительно дешево.
  • Схема подключения светодиода будет лучше работать от +12 вольт. Стандартное напряжение микроэлектроники, встретим во многих местах. Компьютерный блок содержит вольтаж -12 вольт. Изоляция жилы синяя, сам провод оставлен для совместимости со старыми приводами. В нашем случае может понадобиться, не окажись под рукой элементной базы питания +12 вольт. Комплементарные транзисторы найти, включить вместо исходных сложно. Номиналы пассивных элементов остаются. Светодиод включается обратной стороной.
  • Номинал -3,3 вольт на первый взгляд кажется невостребованным. Посчастливится достать на aliexpress RGB светодиоды SMD0603 4 рубля штука. Однако! Падение напряжения в прямом направлении не превышает 3 вольта (обратное включение не понадобится, но в случае неправильной полярности максимальный вольтаж составляет 5).

Устройство светодиода понятно, условия горения известны, приступим к реализации задумки. Заставим элемент мигать.

Тестирование мигающих RGB светодиодов

Компьютерный блок питания выступает идеальным вариантом тестирования светодиодов SMD0603. Нужно просто поставить резистивный делитель. Согласно схеме технической документации оценивают сопротивления p-n переходов в прямом направлении, заручившись помощью тестера. Прямое измерение здесь невозможно. Соберем схему, показанную ниже:


Провод +3,3 В блока питания компьютера оранжевой изоляции, схемную землю берем с черного. Обратите внимание: опасно включать модуль без нагрузки. Идеально подключить DVD-привод или другое устройство. Допускается при наличии умения обращения с приборами под током снять боковую крышку, извлечь оттуда нужные контакты, не снимать блок питания. Подключение светодиодов иллюстрирует схема. Измерили сопротивление на параллельном подключении светодиодов и остановились?

Поясняем: в рабочем состоянии светодиодов понадобится включить несколько, проделаем аналогичную настройку. Напряжение питания на микросхеме составит 2,5 вольта. Обратите внимание, светодиоды мигающие, показания неточные. Максимальное не превыше 2,5 вольта. Индикация успешной работы схемы выражается миганием светодиодов. Чтобы часть мерцала, уберем питание с ненужных. Допускается собрать отладочную схему с тремя переменными резисторами – по одному в ветвь каждого цвета.

Номиналы нужно брать весомые, не забывать: значительно ограничим ток, идущий через светодиоды. Фактически потребуется продумать вопрос согласно ситуации.

Обычный светодиод мигает

Схема мигающего светодиода

Схема, изображенная рисунком, использует для работы лавинный пробой транзистора. КТ315Б, используемый в качестве ключа, имеет максимальное обратное напряжения между коллектором и базой 20 вольт. Опасного в таком включении мало. У модификации КТ315Ж параметр составляет 15 вольт, гораздо ближе выбранному напряжению питания +12 вольт. Транзистор использовать не стоит.

Лавинный пробой нештатный режим p-n перехода. За счет превышения обратного напряжения между коллектором и базой происходит ионизация атомов ударами разогнавшихся носителей заряда. Образуется масса свободных заряженных частиц, увлекаемых полем. Очевидцы утверждают: для пробоя транзистора КТ315 требуется обратное напряжение, приложенное между коллектором и эмиттером, амплитудой 8-9 В.

Пара слов о работе схемы. В первоначальный момент времени начинает заряжаться конденсатор. Подключен на +12 вольт, остальная часть схемы оборвана — закрыт транзисторный ключ. Постепенно разница потенциалов повышается, достигает напряжения лавинного пробоя транзистора. Напряжение конденсатора резко падает, параллельно подключены два открытых p-n перехода:

  1. Транзисторный находится в режиме пробоя.
  2. Светодиод открыт за счет прямого включения.

В сумме напряжение составит порядка 1 вольта, конденсатор начинает разряжаться через открытые p-n переходы, только напряжение падает ниже 7-8 вольт, везение кончается. Транзисторный ключ закрывается, процесс повторяется заново. Схеме присущ гистерезис. Транзистор открывается при более высоком напряжении, нежели закрывается. Обусловлено инерционностью процессов. Видим, как работает светодиод.

Номиналы резистора, ёмкости определяют период колебаний. Конденсатор можно взять значительно меньше, включив меж коллектором транзистора и светодиодом небольшое сопротивление. Например, 50 Ом. Постоянная разряда резко увеличится, проверить светодиод визуально будет проще (возрастет время горения). Понятно, ток не должен быть слишком большим, максимальные значения берутся из справочников. Не рекомендуется вести подключение светодиодных светильников из-за низкой термостабильности системы и наличия нештатного режима транзистора. Надеемся, обзор получился интересным, картинки доходчивыми, объяснения ясными.

Данная светодиодная мигалка на 12 вольт позволяет создать эффект хаотичных вспышек каждого из 6 светодиодов. Принцип работы основан на лавинном пробое p-n перехода .

Описание работы светодиодной мигалки

Опишем работу схемы на одном блоке, оставшиеся пять работают по аналогичному принципу. При подаче напряжения питания через резистор R1 начинает заряжаться конденсатор С1 и следовательно на нем начинает расти напряжение. Пока он заряжается, ничего не происходит.

После того как на выводах конденсатора напряжение достигнет 11…12 вольт, происходит лавинный пробой p-n перехода транзистора, проводимость его возрастает и как следствие этому, светодиод начинает светиться за счет энергии разряжающегося конденсатора C1.

Когда напряжение на конденсаторе падает ниже 9… 10 вольт, транзисторный переход закрывается, и весь процесс повторяется с самого начала. Оставшиеся пять блоков схемы работают также и примерно на той же частоте, но фактически частота немного отличается друг от друга из-за допусков радиокомпонентов.

В конструкции можно применить произвольные радиодетали. Необходимо отметить, что при напряжении питания менее 12 вольт схема работать не будет, поскольку не будет происходить лавинный пробой транзистора и генератор работать не будет. Особенностью этого типа генератора является его зависимость от напряжения питания. Чем выше напряжение, тем выше частота колебаний. Верхний уровень по питанию ограничен характеристиками конденсаторов и токоограничивающих резисторов.

Значения резисторов и конденсаторов определяют частоту работы каждого отдельно взятого генератора. Резисторы, защищают транзисторы от разрушения во время лавинного пробоя. Не следует сильно занижать сопротивление резисторов, так как это может привести к выходу из строя транзисторов. То же самое может произойти, если слишком увеличить емкости конденсаторов. В этом случае можно посоветовать последовательно светодиоду подключить дополнительное сопротивление.

http://pandatron.cz/?520&dekorativni_blikatko

Вашему вниманию представлена, наверное, самая простая, но интересная схема мигалки на светодиоде . Если у вас есть меленькая новогодняя елочка из блестящего дождика то вмонтированный в ее основание яркий светодиод в 5-7 Кд который не просто горит, а еще и мигает – очень простое и красивое украшение рабочего места. Питание схемы 3-12 В, может быть заменено на питание от порта USB. Предыдущая статья также была про мигалку на светодиодах , но в отличие от нее данная статья расскажет про мигалку на одном светодиоде, что никоим образом не сужает ее область применения, я бы сказал даже наоборот. Наверняка вы не однократно видели подмигивающий зеленый, красный или синий огонек, например, в автомобильной сигнализации . Теперь и у вас есть возможность собрать простейшую схему мигалки на светодиоде. Ниже будет представлена таблица с параметрами деталей в схеме для определения частоты вспышек.

Кроме такого применения можно использовать мигалку на светодиоде как эмулятор автомобильной сигнализации. Установка новой автомобильной сигнализации дело не простое и хлопотное, а, имея под рукой указанные детали можно быстро собрать схему мигалки на светодиоде и вот уже ваш автомобиль на первое время «защищен». Во всяком случае от случайного взлома. Такая «автомобильная сигнализация» - мигающий в щели торпеды светодиод отпугнет неопытных взломщиков, ведь это первый признак работающей сигналки? Да мало ли где еще понадобится мигающий светодиод.

Частота с которой зажигается светодиод зависит от сопротивления резисторов R1 и R2 и емкости конденсатора С1. На момент отладки вместо резисторов R1 и R2 можно использовать переменные резисторы соответствующих номиналов. Для небольшого упрощения подбора элементов, в таблице ниже указаны номиналы деталей и соответствующая им частота вспышек.

Если мигалка на светодиоде при каких-то номиналах отказывается работать необходимо, прежде всего, обратить внимание на резистор R1, его сопротивление может быть слишком мало, а также на резистор R2, его сопротивление может быть слишком большим. От резистора R2 зависит длительность самих импульсов, а от резистора R1 длительность паузы между импульсами.

Схема мигалки на светодиоде с небольшими доработками может стать генератором звуковых импульсов . Для этого потребуется на место резистора R3 установить динамик сопротивлением до 4 Ом. Светодиод HL1 заменить на перемычку. В качестве транзистора VT2 использовать транзистор достаточной мощности. Кроме этого необходимо подобрать конденсатор С1 необходимой емкости. Выбор осуществляется следующим образом. Скажем у нас элементы с параметрами из 2 строки таблицы. Частота импульсов 1Гц (60 импульсов в минуту). А мы хотим получить звук с частотой 1000Гц. Следовательно надо уменьшить емкость конденсатора в 1000 раз. Получаем 10мкФ / 1000 = 0,01мкФ = 10нФ. Помимо этого можно поиграть с уменьшением сопротивления резисторов, но не сильно увлекайтесь, можно пожечь транзисторы.

Один из наших постоянных читателей, специально для нашего сайта предложил еще один вариант очень простой светодиодной мигалки. Смотрите видео:

Мультивибратор — простой генератор импульсов. Это одна из первых конструкций начинающих радиолюбителей. На мультивибраторе можно собрать простую мигалку на светодиодах. Итак, если Вы — начинающий радиолюбитель, то после освоения теоретической части электроники можно приступать к практике.

Простой мультивибратор

Схема распространённого простого мультивибратора для двух каналов представлена ниже. Светодиодов в одном плече может быть не только один, но два, три и больше если соединить их.

Трёхканальный мультивибратор

Обычно схема мультивибратора строится на двух транзисторах, как на рисунке выше и предназначен он для получения прямоугольных импульсов. Но н едавно в интернете была найдена схема мультивибратора на три канала.

Рассматриваемый мультивибратор имеет три канала, которые открываются поочередно. Весь монтаж был выполнен на макетной плате, притом со значительными разбросами. В схеме использованы маломощные транзисторы типа КТ315, можно также использовать КТ312, КТ3102, а также более мощные отечественные транзисторы (КТ815, КТ817 и даже КТ819).

Выбор очень велик, можно использовать буквально любые транзисторы прямой или обратной проводимости отечественного и импортного производства. При использовании транзисторов прямой проводимости (КТ361, КТ814, КТ816, КТ818) необходимо поменять источник питания + с — , а также полярность электролитических конденсаторов.

При правильно собранной схеме в настройке мультивибраторы не нуждаются. Следует проверить весь монтаж, особое внимание нужно уделить на подключение электролитических конденсаторов. Напряжение питания подбирается в районе 4…6 вольт, хотя и от «кроны» (9В) тоже работает.

Частоту мигания, т.е. генерирования импульсов по желанию можно подбирать конденсаторами. Конденсаторы следует ставить одинаковой ёмкости, чтобы длительность импульсов была одинаковой.

Светоизлучающие диоды находят широкое применение в самых разных сферах.

Перед тем как сделать мигающий светодиод самостоятельно, следует учесть все нюансы изготовления такой осветительной конструкции, а также приобрести качественные материалы и подготовить грамотную схему сборки.

Готовые мигающие светодиоды

Мигающие или моргающие , по своей сути, являются завершенными, уже готовыми функциональными устройствами, которые играют роль стандартной световой сигнализации и хорошо привлекают внимание.

Такие световые приборы своими размерами абсолютно не отличаются от габаритов стандартного индикаторного светодиода, а в конструкции устройства предусмотрено наличие полупроводникового генераторного чипа и нескольких дополнительных элементов.

Помимо компактности, преимущества готовых осветителей представлены очень широким диапазоном показателей питающего напряжения, разнообразным цветом излучения и всевозможной периодичностью вспышек, а также высокой экономичностью.

Схемы использования

На данный момент существует несколько вполне доступных для самостоятельной реализации практических схем, которые отличаются количеством и типом радиодеталей.

Первая схема характеризуется наличием маломощного , полярного конденсатора 16В - 470 мкФ, резистора и светодиода. Достаточность питания устройства обеспечивается стандартным источником на 12В. Принцип действия напоминает «лавинный пробой», а ощутимый минус такой схемы представлен необходимостью использовать специальный источник напряжения.

Принципиальная схема вспышек на светодиоде

Для второй схемы характерна сборка, аналогичная транзисторному мультивибратору. Именно этим обусловлена высокая надежность устройства. Принцип функционирования базируется на использовании пары полярных конденсаторов 16 В - 10 мкФ, пары ограничивающих резисторов (R1) и (R4), пары резисторов (R2) и (R3), а также пары световых диодов.

Вторая схема работает в условиях широкого диапазона напряжений при последовательном и параллельном подключении световых диодов, а изменение конденсаторной емкости позволяет получить мультивибратор с различным свечением.

Обычные светодиоды

Современные светодиоды способны стать полноценной заменой лампам накаливания, что обусловлено различными характеристиками таких источников света, изготовленных на основе искусственного полупроводникового кристаллика.

Основные параметры светодиодов представлены:

  • напряжением питания;
  • рабочими токовыми величинами;
  • эффективностью или световой отдачей;
  • температурой свечения или цветом;
  • углом излучения;
  • размерами;
  • сроком деградации.

должны соблюдаться определенные правила. В зависимости от характеристик и типа источника питания, различается пара вариантов подключения устройства к сети 220В: посредством драйвера со стандартным токовым ограничителем или при помощи хорошо стабилизирующего напряжение, специального блока питания.

Сборка конструкций на основе нескольких LED-осветителей предполагает использование схем последовательного или параллельного подсоединения.

Как сделать, чтобы светодиоды мигали

Для самостоятельной сборки мигающего , потребуется приобрести несколько компонентов, представленных:
  • парой резисторов 6.8 на 15 Ом;
  • парой резисторов, имеющих сопротивление 470 на 680 Ом;
  • парой маломощных транзисторов «n-p-n»;
  • парой электрических конденсаторов, имеющих емкость 47 - 100 мкФ;
  • маломощным светодиодом;
  • паяльником бытовым, припоем и флюсом.

На всех радиодеталях зачищаются и лудятся выводные части элементов. Очень важно при включении конденсаторов учитывать полярность. Мигание светового диода обеспечивается цикличностью подачи тока.

При правильной сборке всех элементов, изготовленный осветительный прибор обладает частотой мигания порядка полутора Гц, или примерно пятнадцать вспышек на каждые десять секунд.

Схемы «мигалок» на их основе

Получение простых поочередных вспышек осуществляется при помощи пары транзисторов C945 или аналоговых элементов. В первом случае коллектор располагается в центральной части, а во втором - центр отводится под размещение базы.

Пара мигающих светодиодов и схема с одним диодом собирается в соответствии со стандартной схемой. Частота мигания обеспечивается наличием в схеме конденсаторов (C1) и (C2).

Схема сопротивления p-n переходов

При необходимости выполнить подключение сразу нескольких led-элементов, устанавливается достаточный по мощности PNP-транзистор.

Мигающие светодиоды получаются при подключении выводов к разноцветным элементам, поочередные импульсы обеспечиваются встроенным генератором, а частота моргания напрямую зависит от установленной программы.

Область применения

Моргающие светодиодные источники света, оснащенные стандартным генератором встроенного типа, находят широкое применение в новогодних гирляндах.

Именно последовательная сборка таких изделий, дополненная установленным резистором, имеющим незначительное отличие по номинальным показателям, позволяет добиться сдвига в процессе мигания отдельных элементов электронной цепи.

Итогом такой сборки является оригинальный световой эффект, который совсем не нуждается в добавлении слишком сложного блока для управления. Чаще всего новогодняя гирлянда подключается посредством обычного диодного моста.

Мигающие диодные токоуправляемые световые излучатели востребованы в самых различных современных бытовых приборах и электротехнике, где играют роль стандартных индикаторов. При этом такие индикаторные огоньки сигнализируют об определенном состоянии прибора или уровне заряда. На основе моргающих диодов осуществляется сборка электронных табло, разных рекламных вывесок, всевозможных детских игрушек и очень многих других товаров.

Моргающие диоды прекрасно подходят для создания огромного количества интересных и необычных световых эффектов, включая «бегущую волну».

Как сделать фонарик из светодиодов

Фонари, изготовленные на основе светодиодного источника света, отличаются большей яркостью и экономичностью. Источником питания служит аккумулятор на 12 В. Чтобы сделать такой фонарь своими руками необходимо приобрести:

  • отрезок ПВХ-трубы длиной 50 мм;
  • клеящий состав;
  • пару резьбовых ПВХ-фитингов;
  • резьбовую ПВХ-заглушку;
  • тумблер;
  • небольшой кусок пенополистирольного листа;
  • светодиодную лампочку;
  • изолирующую ленту.

Самодельный фонарик

Работы по сборке выполняются с использованием паяльника, припоя, ножовки и надфиля, наждачной бумаги и бокорезов.

После размещения всех элементов в корпусе из ПВХ-трубы, устанавливается светодиодный источник света, а также монтируются фитинги и заглушка, защищающие фонарь от попадания влаги внутрь.

Собранный по схеме фонарь может быть представлен не только целиковой моделью, но и последовательным соединением сразу нескольких батареек АА или ААА, что обеспечивает оптимальное суммарное напряжение 12 В.

Бегущие огни на светодиодах своими руками: схема

Одним из вариантов применения твердотельных световых источников в декоративных целях, является сборка так называемых «бегущих огней» на диодах, включающая в себя генератор прямоугольных импульсов, счетчик, дешифратор и устройства индикации.

Сборка всех элементов по предложенной схеме выполняется на макетной беспаечной плате, а устанавливаемые конденсаторы и резисторы по номиналу могут иметь некоторый разброс, но строго в пределах ±20%.

с тонким жалом, припой и канифоль;

  • острый канцелярский или строительный нож;
  • силиконовый прозрачный герметик.
  • Пошаговая технология самостоятельной сборки диодной гирлянды:

    • определиться с оптимальным расстоянием между диодами;
    • раскрутить и распрямить провод;
    • нанести маркером на провод отметки под расположение диодов;
    • на участках отметок острым ножом удалить изоляцию;
    • нанести на участки без изоляции канифоль и припой;
    • зафиксировать световые диоды, припаяв их ножки;
    • заизолировать участки крепления диодов и силиконового герметика.

    На заключительном этапе выполняется подсоединение блока питания на 8-12V и стандартного резистора.

    При самостоятельной сборке светящейся гирлянды необходимо помнить, что только последовательное соединение всех светодиодов в цепи по стандартной схеме, позволяет получить традиционный мерцающий эффект.

    Сфера применения мигающих светодиодов в настоящее время достаточно широка. При желании и некоторых знаниях в области электрики, на основе таких источников света вполне можно самостоятельно изготовить различные сигнальные схемы, оригинальные детские игрушки, портативные фонарики и даже светящиеся новогодние гирлянды.