Применение o2. Химические и физические свойства, применение и получение кислорода. Окисление водородных соединений неметаллов и металлов

Введение

Каждый день мы вдыхаем такой необходимый нам воздух. А вы никогда не задумывались о том, из чего, точнее из каких веществ, состоит воздух? Больше всего в нем азота (78%), далее идет кислород (21%) и инертные газы (1%). Хоть кислород и не составляет самую основную часть воздуха, но без него атмосфера была бы непригодной для жизни. Благодаря ему на Земле существует жизнь, ведь азот и вместе и по отдельности губительны для человека. Давайте рассмотрим свойства кислорода.

Физические свойства кислорода

В воздухе кислород просто так не различишь, так как в обычных условиях он является газом без вкуса, цвета и запаха. Но кислород можно искусственным путем перевести в другие агрегатные состояния. Так, при -183 о С он становится жидким, а при -219 о С твердеет. Но твердый и жидкий кислород может получить только человек, а в природе он существует лишь в газообразном состоянии. выглядит так (фото). А твердый похож на лед.

Физические свойства кислорода - это еще и строение молекулы простого вещества. Атомы кислорода образуют два таких вещества: кислород (О 2) и озон (О 3). Ниже показана модель молекулы кислорода.

Кислород. Химические свойства

Первое, с чего начинается химическая характеристика элемента - его положение в Д. И. Менделеева. Итак, кислород находится во 2 периоде 6 группе главной подгруппе под номером 8. Его атомная масса - 16 а.е.м, он является неметаллом.

В неорганической химии его бинарные соединения с другими элементами объединили в отдельный - оксиды. Кислород может образовывать химические соединения как с металлами, так и с неметаллами.

Поговорим о его получении в лабораториях.

Химическим путем кислород можно получить с помощью разложения перманганата калия, пероксида водорода, бертолетовой соли, нитратов активных металлов и оксидов тяжелых металлов. Рассмотрим уравнения реакций при применении каждого из этих способов.

1. Электролиз воды:

Н 2 О 2 = Н 2 О + О 2

5. Разложение оксидов тяжелых металлов (например, оксида ртути):

2HgO = 2Hg + O 2

6. Разложение нитратов активных металлов (например, нитрата натрия):

2NaNO 3 = 2NaNO 2 + O 2

Применение кислорода

С химическими свойствами мы закончили. Теперь пора поговорить о применении кислорода в жизни человека. Он нужен для сжигания топлива в электрических и тепловых станциях. Его используют для получения стали из чугуна и металлолома, для сварки и резки металла. Кислород нужен для масок пожарных, для баллонов водолазов, применяется в черной и цветной металлурги и даже в изготовлении взрывчатых веществ. Также в пищевой промышленности кислород известен как пищевая добавка Е948. Кажется, нет отрасли, где бы он не использовался, но самую важную роль он играет в медицине. Там он так и называется - "кислород медицинский". Для того чтобы кислород был пригоден для использования, его предварительно сжимают. Физические свойства кислорода способствуют тому, что его можно сжать. В подобном виде он хранится внутри баллонов, похожих на такие.

Его используют в реанимации и на операциях в аппаратуре для поддержания жизненных процессов в организме больного пациента, а также при лечении некоторых болезней: декомпрессионной, патологий желудочно-кишечного тракта. С его помощью врачи каждый день спасают множество жизней. Химические и физические свойства кислорода способствуют тому, что его используют так широко.

Бериллий, магний. Распространение в природе. Физические и химические свойства. Биологическая роль. Признаки дефицита, токсичность элемента. Применение соединений в медицине и фармации

Ве- элемент главной подгруппы второй группы, второго периода периодической системы, с атомным номером 4.

В природе: Разновидности берилла считаются драгоценными камнями: аквамарин - голубой, зеленовато-голубой, голубовато-зеленый; изумруд - густо-зеленый, ярко-зеленый; гелиодор - желтый; Содержание бериллия в морской воде чрезвычайно низкое - 6·10 −7 мг/л

Бериллий - относительно твердый, но хрупкий металл серебристо-белого цвета.На воздухе активно покрывается стойкой оксидной плёнкой BeO.

Для бериллия характерна только одна степень окисления +2. Соответствующий гидроксид амфотерен, причем как основные, так и кислотные свойства выражены слабо.

Используется для изготовления окон к рентгеновским установкам, добавляется к сплавам для увеличения твердости и электропроводности.

Био роль: Ве снижает активность иммуноглобулина. Избыток приводит к заболеванию – пневмонии.

Мg- элемент главной подгруппы второй группы, третьего периода с атомным номером 12.

В природе: Это один из самых распространённых элементов земной коры Содержание составляет 1,87 %. Большие количества магния находятся в морской воде.

Физ свойства: Магний - металл серебристо-белого цвета с гексагональной решёткой, обладает металлическим блеском. При обычных условиях поверхность магния покрыта прочной защитной плёнкой оксида магния MgO.

Хим свойства: Раскаленный магний реагирует с водой:
Mg + Н 2 О = MgO + H 2
Щелочи на магний не действуют, в кислотах он растворяется легко с выделением водорода:
Mg + 2HCl = MgCl 2 + H 2
При нагревании на воздухе магний сгорает с образованием оксида и небольшого количества нитрида. При этом выделяется большое количество теплоты и световой энергии:
2Mg + О 2 = 2MgO
3Mg + N 2 = Mg 3 N 2
Магний может гореть даже в углекислом газе:
2Mg + CO 2 = 2MgO + C

Био роль: внутриклеточный ион, активирует ферменты, учувствует в гидролиз, активирует синтез белка, учувствуют в минерализации костей.

MgO – входит в состав стоматологический паст и зубных цементов.

Биологическая роль:

Водород как отдельный элемент не обладает биологической ценностью. Для организма важны соединения, в состав которых он входит, а именно вода, белки, жиры, углеводы, витамины, биологически активные вещества (за исключением минералов) и т.д. Наибольшую ценность, конечно, представляет соединение водорода с кислородом – вода, которая фактически является средой существования всех клеток организма. Другой группой важных соединений водорода являются кислоты – их способность высвобождать ион водорода делает возможным формирование рН среды. Немаловажной функцией водорода также является его способность образовывать водородные связи, которые, например, формируют в пространстве активные формы белков и двухцепочечную структуру ДНК.


Признаки дефицита:

· обезвоживание, чувство жажды,

· снижение тургора тканей,

· сухость кожи и слизистых оболочек,

· повышение концентрации крови,

· артериальная гипотензия.

Токсичность: Водород нетоксичен. Летальная доза для человека не определена.

Применение в мед и фарм: Соединения водорода используются в химической промышленности при получении метанола, аммиака и т.д.

В медицине один из изотопов водорода (дейтерий) в качестве метки используется при исследованиях фармакокинетики лекарственных препаратов. Другой изотоп (тритий) применяется в радиоизотопной диагностике, при изучении биохимических реакций метаболизма ферментов и др.

Перекись водорода H 2 O 2 является средством дезинфекции и стерилизации.

Биологическая роль:

  • участвует во многих биохимических реакциях (регулирует активность ряда ферментов - аденилатциклазы, липаз, эстераз, лактатдегидрогеназ и др.)
  • участвует в образовании костной ткани, а также формировании эмали и дентина зубной ткани, проявляя выраженный противокариесный эффект за счет подавления кислотообразующих бактерий в полости рта

Признаки дефицита:

  • повышение риска развития кариеса зубов
  • повышение риска развития остеопороза

Токсичность: Большинство фтороорганических соединений сильно ядовиты. Некоторые неорганические соединения фтора (напр., HF) также очень токсичны. Потенциально летальная доза NaF при пероральном поступлении составляет всего 5-10 г. Однако ряд насыщенных фтороуглеродных соединений абсолютно химически и биологически нейтральны.

Токсическая доза фтора для человека: 20 мг. Летальная доза для человека: 2 г.

Применение в мед и фарм:

Биологическая пасивность фтороуглеродных соединений в совокупности со свойствами хорошо растворять кислород и другие газы дает возможность использовать их в качестве искусственного кровезаменителя с газотранспортной функцией. На сегодняшний день существует ряд препаратов, используемых в качестве кровезаменителей и содержащих перфторуглеродные соединения.

На основе биологически нейтральных фторорганических соединений изготовляются искусственные сосуды и клапаны для сердца.

Самым радикальным и эффективным методом обеззараживания воды считается ее фторирование (до концентрации 1 мг/л). Фторирование воды приводит к снижению кариеса на 30-50 %, также при лечении кариеса применяются местные аппликации 1-2% раствором фторида натрия или фторида олова.

В медицине фторсодержащие препараты служат для лечения гипофтороза, выпускаются в виде таблеток, лечебных пленок, лаков для зубов, используются как наркотические средства и т.д.

Радиоактивные изотопы фтора применяются в медико-биологических исследованиях.

Биологическая роль:

  • в связи с тем, что хлорид-ионы способны проникать через мембрану клеток, они вместе с ионами натрия и калия поддерживают осмотическое давление и регулируют водно-солевой обмен
  • создают благоприятную среду в желудке для действия протеолитических ферментов желудочного сока
  • благодаря наличию в мембранах клетоки митохондрий специальных хлорных каналов, хлорид ионы регулируют объем жидкости, трансэпителиальный транспорт ионов, создают и стабилизируют мембранный потенциал
  • участвуют в создании и поддержании рН в клетках и биологических жидкостях организма

Признаки дефицита:

  • слабость, сонливость, вялость, анорексия
  • выпадение зубов и волос
  • дерматиты
  • алкалоз
  • запоры

Токсичность: Хлор - токсичный удушливый газ, при попадании в лёгкие вызывает ожог лёгочной ткани, удушье. Раздражающее действие на дыхательные пути оказывает при концентрации в воздухе около 0,006 мг/л (т.е. в два раза выше порога восприятия запаха хлора).

Применение в мед. и фарм.:

Соединения хлора используются в приготовлении пищи (NaCl), для обеззараживания питьевой воды (хлорирование), дезинфекции, отбеливании тканей, в качестве реагента для многих химических процессов (HCl, HClO4), а также широко используются в химической и целлюлозно-бумажной промышленности при производстве органических растворителей и полимеров.

Хлор применяется для производства гербицидов, пестицидов и инсектицидов.

Хлор элемент входит в состав желудочного сока, препаратов для лечения ряда желудочно-кишечных заболеваний. В медицине широко используются бактерицидные свойства хлорсодержащих препаратов.

Биологическая роль:

  • стимулирует рост и развитие организма
  • регулирует рост и дифференцировку тканей
  • повышает артериальное давление, а также частоту и силу сердечных сокращений
  • регулирует (увеличивает) скорость протекания многих биохимических реакций
  • регулирует обмен энергии, повышает температуру тела
  • регулирует обмен витаминов
  • повышает потребление тканями кислорода

Признаки дефицита:

  • Увеличение щитовидной железы и формирование эндемического зоба.
  • Нарушение выработки гормонов щитовидной железы.
  • Снижение основного обмена, температуры тела.
  • У детей – развитие кретинизма, отсталость в физическом и умственном развитии.

Токсичность: Токсическая доза для человека: 2-5 мг/сутки.

Летальная доза для человека: 35-350 мг.

Применение в мед. и фарм: Несмотря на активное применение йодированной соли в развитых странах, нехватка йода остается одним из наиболее распространенных минеральных дефицитов в мире. Согласно рекомендациям ВОЗ, в мире применяются 4 метода профилактики йододефицитных заболеваний: йодирование соли, хлеба, масла и прием обогащенных йодом биологически активных добавок к пище.

В медицинских целях йод используется в лекарственных препаратах, применяемых, в частности, при заболеваниях щитовидной железы.

Йод входит в состав "бытовой" настойки йода в спирте, раствора Люголя, ряда препаратов, таких как: Йокс, Йодид. Йод используют в гинекологической практике для профилактики и лечения инфекционных заболеваний как средство для местного применения.

Радиоактивный йод применяется для диагностики заболеваний щитовидной железы.

Некоторые препараты йода служат в качестве рентгеноконтрастных веществ при исследованиях сосудов и сердца, матки и фаллопиевых труб, печени и желчного пузыря.

59. Биологическая роль серы.

  • придает необходимую для их функционирования пространственную организацию молекулам белков за счет образования дисульфидных мостиков
  • является компонентом многих ферментов, гормонов (в частности в инсулина), и серосодержащих аминокислот
  • является компонентом таких активных веществ, как гистамин, витамина биотин, витаминоида липоевой кислоты и др.
  • сульфгидрильные группы образуют активные центры ряда ферментов
  • обеспечивает передачу энергии в клетке: атом серы принимает на свободную орбиталь один из электронов кислорода
  • участвует в переносе метильных групп
  • входит в состав коэнзимов, включая коэнзим А

Роль тиоловой группы: Сульфгидрильные группы (тиоловые группы,) SH-группы органических соединений. С. г. обладают высокой и разнообразной реакционной способностью: легко окисляются с образованием дисульфидов, сульфеновых, сульфиновых или сульфокислот; легко вступают в реакции алкилирования, ацилирования, тиол-дисульфидного обмена, образуют меркаптиды (при реакции с ионами тяжёлых металлов), меркаптали, меркаптолы (при реакции с альдегидами и кетонами). С. г. играют важную роль в биохимических процессах. С. г. кофермента А (См. Кофермент А), липоевой кислоты (См. Липоевая кислота) и 4 1 -фосфопантетеина участвуют в ферментативных реакциях образования и переноса ацильных остатков, связанных с метаболизмом липидов и углеводов;

Признаки дефицита:

  • патологии печени, суставов, кожи
  • нарушения метаболизма серосодержащих соединений

Токсичность: Чистая сера нетоксична для человека. Данные о токсичности серы, содержащейся в пищевых продуктах, отсутствуют. Летальная доза для человека не определена.

Токсичны многие соединения серы. К числу наиболее опасных соединений серы относятся сероводород, оксид серы и сернистый ангидрид.

Применение в мед. и фарм.: Для медицинских целей люди издавна использовали дезинфицирующие свойства серы, которую применяли при лечении кожных болезней, а также бактерицидное действие сернистого газа, образующегося при горении серы.

При приеме внутрь элементарная сера действует как слабительное. Порошок очищенной серы используют в качестве противоглистного средства при энтеробиозе. Соединения серы в виде сульфаниламидных препаратов (бисептол, сульфацил-натрия, сульгин и др.) обладают противомикробной активностью.

Стерильный раствор 1-2% серы в персиковом масле применяют для пирогенной терапии при лечении сифилиса.

Сера и ее неорганические соединения применяются при хронических артропатиях, при заболеваниях сердечной мышцы (кардиосклероз), при многих хронических кожных и гинекологических заболеваниях, при профессиональных отравлениях тяжелыми металлами (ртуть, свинец) - Тиосульфат натрия.

Очищенную и осажденную серу применяют наружно в мазях и присыпках при кожных заболеваниях (себорея, сикоз); при лечении себореи волосистой части головы используют селена дисульфид. Тиосульфат натрия также применяется как наружное средство при лечении больных чесоткой и некоторыми грибковыми заболеваниями кожи.

60. Биологическая роль кислорода.

Кислород входит в состав молекул множества веществ - от самых простых до сложных полимеров; наличие в организме и взаимодействие этих веществ обеспечивает существование жизни. Являясь составной частью молекулы воды, кислород участвует практически во всех биохимических процессах протекающих в организме.

Кислород незаменим, при его недостатке эффективным средством может быть только восстановление нормального снабжения организма кислородом. Даже кратковременное (несколько минут) прекращение поступления кислорода в организм может вызвать тяжелые нарушения его функций и последующую смерть.

Главной функцией молекулярного кислорода в организме является окисление различных соединений. Вместе с водородом кислород образует воду, содержание которой в организме взрослого человека в среднем составляет около 55-65%.

Кислород входит в состав белков, нуклеиновых кислот и других жизненно-необходимых компонентов организма. Кислород необходим для дыхания, окисления жиров, белков, углеводов, аминокислот, а также для многих других биохимических процессов.

Аллотропия:

Физические свойства кислорода

Газ - без цвета, вкуса и запаха; в 100V H 2 O растворяется 3V O 2 (н.у.); t°кип= -183°С; t°пл = -219°C; D по воздуху = 1,1, т.е. тяжелее воздуха.

Способы получения

1. Промышленный способ (перегонка жидкого воздуха).

2. Лабораторный способ (разложение некоторых кислородосодержащих веществ)

2KMnO 4 → K 2 MnO 4 + MnO 2 + O 2 ­ (при нагревании)

2KClO 3 → 2KCl + 3O 2 ­ (при нагревании, в присутствии катализатора MnO 2)

2H 2 O 2 → 2H 2 O + O 2 ­ (в присутствии катализатора MnO 2)

Способы собирания

Вытеснением воды Вытеснением воздуха

Химические свойства

Взаимодействие веществ с кислородом называется окислением .

С кислородом реагируют все элементы, кроме Au, Pt, He, Ne и Ar, во всех реакциях (кроме взаимодействия со фтором) кислород - окислитель.

С неметаллами

S + O 2 → SO 2

2H 2 + O 2 → 2H 2 O

С металлами

2Mg + O 2 → 2MgO

2Cu + O 2 →2CuO (при нагревании)

Четыре элемента-«халькогена» (т.е. «рождающих медь») возглавляют главную подгруппу VI группы (по новой классификации - 16-ю группу) периодической системы. Кроме серы, теллура и селена к ним также относится кислород. Давайте подробно разберем свойства этого наиболее распространенного на Земле элемента, а также применение и получение кислорода.

Распространенность элемента

В связанном виде кислород входит в химический состав воды - его процентное соотношение составляет порядка 89%, а также в состав клеток всех живых существ - растений и животных.

В воздухе кислород находится в свободном состоянии в виде О2, занимая пятую часть его состава, и в виде озона - О3.

Физические свойства

Кислород О2 представляет собой газ, который не обладает цветом, вкусом и запахом. В воде растворяется слабо. Температура кипения - 183 градуса ниже нуля по Цельсию. В жидком виде кислород имеет голубой цвет, а в твердом виде образует синие кристаллы. Температура плавления кислородных кристаллов составляет 218,7 градуса ниже нуля по Цельсию.

Химические свойства

При нагревании этот элемент реагирует со многими простыми веществами, как металлами, так и неметаллами, образуя при этом так называемые оксиды - соединения элементов с кислородом. в которую элементы вступают с кислородом, называется окислением.

Например,

4Na + О2= 2Na2O

2. Через разложение перекиси водорода при нагревании ее в присутствии оксида марганца, выступающего в роли катализатора.

3. Через разложение перманганата калия.

Получение кислорода в промышленности проводится такими способами:

1. Для технических целей кислород получают из воздуха, в котором обычное его содержание составляет порядка 20%, т.е. пятую часть. Для этого воздух сначала сжигают, получая смесь с содержанием жидкого кислорода около 54%, жидкого азота - 44% и жидкого аргона - 2%. Затем эти газы разделяют с помощью процесса перегонки, используя сравнительно небольшой интервал между температурами кипения жидкого кислорода и жидкого азота - минус 183 и минус 198,5 градуса соответственно. Получается, что азот испаряется раньше, чем кислород.

Современная аппаратура обеспечивает получение кислорода любой степени чистоты. Азот, который получается при разделении используется в качестве сырья при синтезе его производных.

2. также дает кислород очень чистой степени. Этот способ получил распространение в странах с богатыми ресурсами и дешевой электроэнергией.

Применение кислорода

Кислород является основным по значению элементом в жизнедеятельности всей нашей планеты. Этот газ, который содержится в атмосфере, расходуется в процессе животными и людьми.

Получение кислорода очень важно для таких сфер деятельности человека, как медицина, сварка и резка металлов, взрывные работы, авиация (для дыхания людей и для работы двигателей), металлургия.

В процессе хозяйственной деятельности человека кислород расходуется в больших количествах - например, при сжигании различных видов топлива: природного газа, метана, угля, древесины. Во всех этих процессах образуется При этом природа предусмотрела процесс естественного связывания данного соединения с помощью фотосинтеза, который проходит в зеленых растениях под действием солнечного света. В результате этого процесса образуется глюкоза, которую растение потом расходует для строительства своих тканей.

Где бы мы ни находились, нас всюду окружает кислород воздуха.

Почему же мы не замечаем и не чувствуем его? Кислород, азот, аргон и другие газы, входящие в состав воздуха, бесцветны и не имеют ни запаха, ни вкуса. Газообразный воздух нельзя ни видеть, ни ощущать.

Воздух из газообразного состояния можно перевести в жидкое. Одновременно с основной массой воздуха - азотом - в жидкое состояние перейдут кислород и большинство других газов, входящих в его состав.

Чтобы газообразный кислород превратить в жидкость, его нужно сжать до 50 атмосфер и охладить до -119°.

Жидкий кислород можно получить и при атмосферном давлении, но для этого нужно газообразный кислород охладить до температуры -183°. При более сильном охлаждении, до температуры -220°, жидкий кислород затвердевает и превращается в снегообразную массу.

Если на некоторое время в жидкий кислород поместить кусочек резины, она потеряет свою эластичность и под ударом разлетится на мелкие части.

Такую же хрупкость приобретает и цинковая пластинка, охлажденная в жидком кислороде до температуры -183°. Жидкая ртуть при такой температуре превращается в твердую массу, которую можно ковать, как свинец, а свинец приобретает способность звенеть, как бронзовый колокольчик.

Жидкий кислород имеет голубоватый цвет. Его можно легко переливать из сосуда в сосуд. При переливании жидкий кислород «парит». Но это не пары кислорода, а пары воды. Жидкий кислород, испаряясь, поглощает много тепла из окружающего воздуха. Воздух сильно охлаждается, и влага, находящаяся в воздухе, конденсируется, образуя туман. Этот туман и создает впечатление пара, исходящего из самой жидкости.

Температура кипения жидкого кислорода равна -183°.

Если фарфоровый стакан с жидким кислородом вынести зимой на мороз 30-40°, он будет кипеть более бурно, чем вода на самом сильном огне газовой плиты.

При комнатной температуре испарение жидкого кислорода идет еще энергичнее, и он быстро переходит в газообразное состояние.

Чтобы использовать жидкий кислород, его необходимо сохранить. Как же заставить эту бурно кипящую жидкость не так быстро испаряться?

Для этого служат специальные сосуды, в которых легко удается «укротить» эту быстро испаряющуюся жидкость.

Сосуд для хранения жидкого кислорода представляет собой цилиндр с двойными стенками. Внутренние стороны стенок обычно покрывают тонким слоем серебра. Воздух между стенками сосуда выкачивается.

Разреженные газы плохо проводят тепло, а зеркальная поверхность серебра хорошо отражает его. Таким образом, жидкий кислород, который находится в сосуде, изолирован от внешнего тепла, что обеспечивает сохранение жидкого кислорода в течение одних-двух суток.

При испарении жидкого кислорода объем его увеличивается почти в 800 раз. Из кубического сантиметра жидкого кислорода образуется около 800 кубических сантиметров газообразного.

Хранить жидкий кислород в закрытых сосудах опасно: внутри сосуда может образоваться большое давление, приводящее к взрыву. Поэтому сосуды для хранения жидкого кислорода сверху открыты. Воздух, находящийся над жидкостью, сильно охлаждается и предохраняет кислород от наружного тепла, замедляя дальнейшее испарение.

Для перевозки небольших количеств жидкого кислорода используют металлические емкостью 15-25 литров.

Металлические сосуды состоят из двух шаров или цилиндров, вставленных друг в друга. Внутренний шар или цилиндр имеет высокое и узкое горло, через которое сосуд заполняется жидким кислородом. Горло всегда остается открытым. Из пространства между стенками сосуда воздух выкачан, и создан высокий вакуум, то есть сильное разрежение.

Чтобы поддержать высокий вакуум, часть пространства между стенками заполняется силикагелем, способным при низкой температуре поглощать количество газа в сотни раз больше своего собственного объема. Если через стенки или через места спайки со временем просочится небольшая часть воздуха, он поглотится силикагелем и разрежение не уменьшится. Высокий вакуум обеспечивает постоянную изоляцию сосуда от внешнего тепла и дает возможность в течение двух и более суток сохранять в нем жидкий кислород. Такие сосуды обычно помещают в железные цилиндры.

Пространство между сосудом и наружным цилиндром заполняют теплоизоляционным материалом. Для переноски на наружном цилиндре имеются ручки.

Большие количества жидкого кислорода перевозятся по железной дороге и автотранспортом в специальных цистернах или танках. Они хорошо изолированы от внешнего тепла. Емкость транспортных танков различна: от 1 тысячи до 10 тысяч литров. Цистерны, в которых жидкий кислород перевозят по железной дороге, вмещают до нескольких десятков тонн.

Жидкий кислород можно получить из жидкого воздуха, который образуется при низких температурах и высоком давлении.

Высокое давление создают в машинах, которые называются компрессорами. Их приводят в движение электродвигатели.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

>>

Химические свойства кислорода. Оксиды

В этом параграфе речь идет:

> о реакциях кислорода с простыми и сложными веществами;
> о реакциях соединения;
> о соединениях, которые называют оксидами.

Химические свойства каждого вещества проявляются в химических реакциях при его участии.

Кислород - один из наиболее активных неметаллов. Ho в обычных условиях он реагирует с немногими веществами. Его реакционная способность существенно возрастает с повышением температуры.

Реакции кислорода с простыми веществами.

Кислород реагирует, как правило, при нагревании, с большинством неметаллов и почти со всеми металлами.

Реакция с углем (углеродом). Известно, что уголь, нагретый на воздухе до высокой температуры, загорается. Это свидетельствует о протекании химической реакции вещества с кислородом. Теплоту, которая выделяется при этом, используют, например, для обогрева домов в сельской местности.

Основным продуктом сгорания угля является углекислый газ. Его химическая формула - CO 2 . Уголь - смесь многих веществ. Массовая доля Карбона в нем превышает 80 % . Считая, что уголь состоит только из атомов Карбона, напишем соответствующее химическое уравнение:

t
С + O 2 = CO 2 .

Карбон образует простые вещества - графит и алмаз. Они имеют общее название - углерод - и взаимодействуют с кислородом при нагревании согласно приведенному химическому уравнению 1 .

Реакции, при которых из нескольких веществ образуется одно, называют реакциями соединения.

Реакция с серой.

Это химическое превращение осуществляет каждый, когда зажигает спичку; сера входит в состав ее головки. В лаборатории реакцию серы с кислородом проводят в вытяжном шкафу. Небольшое количество серы (светло-желтый порошок или кристаллы) нагревают в железной ложке. Вещество сначала плавится, потом загорается в результате взаимодействия с кислородом воздуха и горит едва заметным синим пламенем (рис. 56, б). Появляется резкий запах продукта реакции - сернистого газа (этот запах мы ощущаем в момент загорания спички). Химическая формула сернистого газа - SO 2 , а уравнение реакции -
t
S + O 2 = SO 2 .

Рис. 56. Сера (а) и ее горение на воздухе (б) и в кислороде (в)

1 В случае недостаточного количества кислорода образуется другое соединение Карбона с Оксигеном - угарный газ
t
CO: 2С + O 2 = 2СО.



Рис. 57. Красный фосфор (а) и его горение на воздухе (б) и в кислороде (в)

Если ложку с горящей серой поместить в сосуд с кислородом, то сера будет гореть более ярким пламенем, чем на воздухе (рис. 56, в). Это можно объяснить тем, что молекул O 2 в чистом кислороде больше, чем в воздухе.

Реакция с фосфором. Фосфор, как и сера, горит в кислороде интенсивнее, чем на воздухе (рис. 57). Продуктом реакции является белое твердое вещество - фосфор(\/) оксид (его мелкие частицы образуют дым):
t
P + O 2 -> P 2 0 5 .

Превратите схему реакции в химическое уравнение.

Реакция с магнием.

Раньше эту реакцию использовали фотографы для создания яркого освещения («магниевая вспышка») при фотосъемке. В химической лаборатории соответствующий опыт проводят так. Металлическим пинцетом берут магниевую ленту и поджигают на воздухе. Магний сгорает ослепительно-белым пламенем (рис. 58, б); смотреть на него нельзя! В результате реакции образуется белое твердое вещество. Это соединение Магния с Оксигеном; его название - магний оксид.

Рис. 58. Магний (а) и его горение на воздухе (б)

Составьте уравнение реакции магния с кислородом.

Реакции кислорода со сложными веществами. Кислород может взаимодействовать с некоторыми оксигенсодержащими соединениями. Например, угарный газ CO горит на воздухе с образованием углекислого газа:

t
2СО + O 2 = 2С0 2 .

Немало реакций кислорода со сложными веществами мы осуществляем в повседневной жизни, сжигая природный газ (метан), спирт, древесину, бумагу, керосин и др. При их горении образуются углекислый газ и водяной пар:
t
CH 4 + 20 2 = CO 2 + 2Н 2 О;
метан
t
C 2 H 5 OH + 30 2 = 2С0 2 + 3H 2 О.
спирт


Оксиды.

Продуктами всех реакций, рассмотренных в параграфе, являются бинарные соединения элементов с Оксигеном.

Соединение, образованное двумя элементами, одним из которых является Оксиген, называют оксидом.

Общая формула оксидов - EnOm.

Каждый оксид имеет химическое название, а некоторые - еще и традиционные, или тривиальные 1 , названия (табл. 4). Химическое название оксида состоит из двух слов. Первым словом является название соответствующего элемента, а вторым - слово «оксид». Если элемент имеет переменную валентность, то он может образовывать несколько оксидов. Их названия должны отличаться. Для этого после названия элемента указывают (без отступа) римской цифрой в скобках значение его валентности в оксиде. Пример такого названия соединения: купрум(II) оксид (читается « купрум-два-оксид »).

Таблица 4

1 Термин происходит от латинского слова trivialis - обыкновенный.

Выводы

Кислород - химически активное вещество. Он взаимодействует с большинством простых веществ, а также со сложными веществами. Продуктами таких реакций являются соединения элементов с Оксигеном - оксиды.

Реакции, при которых из нескольких веществ образуется одно, называют реакциями соединения.

?
135. Чем различаются реакции соединения и разложения?

136. Превратите схемы реакций в химические уравнения:

а) Li + O 2 -> Li 2 O;
N2 + O 2 -> NO;

б) SO 2 + O 2 -> SO 3 ;
CrO + O 2 -> Cr 2 O 3 .

137. Выберите среди приведенных формул те, которые отвечают оксидам:

O 2 , NaOH, H 2 O, HCI, I 2 O 5 , FeO.

138. Дайте химические названия оксидам с такими формулами:

NO, Ti 2 O 3 , Cu 2 O, MnO 2 , CI 2 O 7 , V 2 O 5 , CrO 3 .

Примите во внимание, что элементы, которые образуют эти оксиды, имеют переменную валентность.

139. Запишите формулы: а) плюмбум(I\/) оксида; б) хром(III) оксида;
в) хлор(I) оксида; г) нитроген(I\/) оксида; д) осмий(\/III) оксида.

140. Допишите формулы простых веществ в схемах реакций и составьте химические уравнения:

а) ... + ... -> CaO;

б) NO + ... -> NO 2 ; ... + ... -> As 2 O 3 ; Mn 2 O 3 + ... -> MnO 2 .

141. Напишите уравнения реакций, с помощью которых можно осущест­вить такие «цепочки» превращений, т. е. из первого вещества полу­чить второе, из второго - третье:

а) С -> CO -> CO 2 ;
б) P -> P 2 0 3 -> P 2 0 5 ;
в) Cu -> Cu 2 O -> CuO.

142.. Составьте уравнения реакций, которые происходят при горении на воздухе ацетона (CH 3) 2 CO и эфира (C 2 H 5) 2 O. Продуктами каждой ре­акции являются углекислый газ и вода.

143. Массовая доля Оксигена в оксиде EO 2 равна 26 %. Определите элемент Е.

144. Две колбы заполнены кислородом. После их герметизации в одной колбе сожгли избыток магния, а в другой - избыток серы. В какой колбе образовался вакуум? Ответ объясните.

Попель П. П., Крикля Л. С., Хімія: Підруч. для 7 кл. загальноосвіт. навч. закл. - К.: ВЦ «Академія», 2008. - 136 с.: іл.

Содержание урока конспект урока и опорный каркас презентация урока интерактивные технологии акселеративные методы обучения Практика тесты, тестирование онлайн задачи и упражнения домашние задания практикумы и тренинги вопросы для дискуссий в классе Иллюстрации видео- и аудиоматериалы фотографии, картинки графики, таблицы, схемы комиксы, притчи, поговорки, кроссворды, анекдоты, приколы, цитаты Дополнения рефераты шпаргалки фишки для любознательных статьи (МАН) литература основная и дополнительная словарь терминов Совершенствование учебников и уроков исправление ошибок в учебнике замена устаревших знаний новыми Только для учителей календарные планы учебные программы методические рекомендации