Что такое компьютерный эксперимент. Компьютерный эксперимент и компьютерное моделирование. Компьютерный физический эксперимент

В представленном выше определении термин "эксперимент" имеет двойственный смысл. С одной стороны, в компьютерном эксперименте, так же как и в реальном, исследуются отклики системы на те или иные изменения параметров либо на внешние воздействия. В качестве параметров часто используются температура, плотность, состав. А воздействия чаще всего реализуются через механические, электрические или магнитные поля. Разница состоит лишь в том, что экспериментатор имеет дело с реальной системой, в то время как в компьютерном эксперименте рассматривается поведение математической модели реального объекта. С другой стороны, возможность получать строгие результаты для четко определенных моделей позволяет использовать компьютерный эксперимент как самостоятельный источник информации для проверки предсказаний аналитических теорий и, следовательно, в этом качестве результаты моделирования играют роль того же эталона, что и опытные данные.

Из всего сказанного видно, что существует возможность двух очень разных подходов к постановке компьютерного эксперимента, что обусловлено характером решаемой задачи и тем самым определяет выбор модельного описания.

Во-первых, расчеты методами МД или МК могут преследовать чисто утилитарные цели, связанные с предсказанием свойств конкретной реальной системы и их сопоставлением с физическим экспериментом. В этом случае можно делать интересные прогнозы и проводить исследования в экстремальных условиях, например, при сверхвысоких давлениях или температурах, когда реальный эксперимент по различным причинам неосуществим либо требует слишком больших материальных затрат. Моделирование на компьютере часто является вообще единственным путем получения наиболее подробной ("микроскопической") информации о поведении сложной молекулярной системы. Это особенно наглядно это показали численные эксперименты динамического типа с различными биосистемами: глобулярными белками в нативном состоянии, фрагментами ДНК и РНК, липидными мембранами. В целом ряде случаев полученные данные заставили пересмотреть или существенно изменить имевшиеся ранее представления о структуре и функционировании этих объектов. При этом следует иметь в виду, что поскольку в подобных расчетах применяют разного рода валентные и невалентные потенциалы, которые лишь аппроксимируют истинные взаимодействия атомов, то это обстоятельство в конечном итоге и определяет меру соответствия между моделью и реальностью. Первоначально проводят решение обратной задачи, когда потенциалы калибруют по имеющимся опытным данным, и только потом уже эти потенциалы используют для получения более детальных сведений о системе. Иногда, параметры межатомных взаимодействий могут быть в принципе найдены из квантово-химических расчетов, выполненных для более простых модельных соединений. При моделировании методами МД или МК молекула трактуется не как совокупность электронов и ядер, подчиняющаяся законам квантовой механики, а как система связанных классических частиц - атомов. Такая модель называется механической моделью молекулы .

Целью другого подхода к постановке компьютерного эксперимента может быть понимание общих (универсальных или модельно-инвариантных) закономерностей поведения изучаемой системы, то есть таких закономерностей, которые определяются лишь наиболее типическими особенностями данного класса объектов, но не деталями химического строения отдельно взятого соединения. То есть в этом случае компьютерный эксперимент имеет своей целью установление функциональных связей, а не расчет числовых параметров. Эта идеология в наиболее отчетливой форме присутствует в скейлинговой теории полимеров. С точки зрения такого подхода компьютерное моделирование выступает в роли теоретического инструмента, который, прежде всего, позволяет проверить выводы существующих аналитических методов теории или дополнить их предсказания. Подобное взаимодействие между аналитической теорией и компьютерным экспериментом бывает очень плодотворным, когда в обоих подходах удается использовать идентичные модели. Наиболее ярким примером такого рода обобщенных моделей полимерных молекул может служить так называемая решеточная модель . На ее основе выполнено множество теоретических построений, в частности связанных с решением классической и, в каком то смысле, основной задачи физикохимии полимеров о влиянии объемных взаимодействий на конформацию и, соответственно, на свойства гибкой полимерной цепи. Под объемными взаимодействиями обычно подразумевают короткодействующие силы отталкивания, которые возникают между удаленными вдоль по цепи звеньями, когда они сближаются в пространстве за счет случайных изгибов макромолекулы. В решеточной модели реальную цепь рассматривают как ломаную траекторию, которая проходит через узлы правильной решетки заданного типа: кубической, тетраэдрической и др. Занятые узлы решетки соответствуют полимерным звеньям (мономерам), а соединяющие их отрезки - химическим связям в скелете макромолекулы. Запрет самопересечений траектории (или, иными словами, невозможность одновременного попадания двух и более мономеров в один решеточный узел) моделирует объемные взаимодействия (Рис. 1). То есть если, например, если используется метод МК и при смещении случайно выбранного звена оно попадает в уже занятый узел, то такая новая конформация отбрасывается и уже не учитывается в вычислении интересующих параметров системы. Различные расположения цепи на решетке соответствуют конформациям полимерной цепи. По ним и проводится усреднение требуемых характеристик, например расстояния между концами цепи R.

Исследование такой модели позволяет понять, как объемные взаимодействия влияют на зависимость среднеквадратичной величины от числа звеньев в цепи N. Конечно величина , определяющая средние размеры полимерного клубка, играет основную роль в разных теоретических построениях и может быть измерена на опыте; однако до сих пор не существует точной аналитической формулы для расчета зависимости от N при наличии объемных взаимодействий. Можно также ввести дополнительно энергию притяжения между теми парами звеньев, которые попали в соседствующие узлы решетки. Варьируя эту энергию в компьютерном эксперименте, удается, в частности, исследовать интересное явление, называемое переходом "клубок -- глобула", когда за счет сил внутримолекулярного притяжения развернутый полимерный клубок сжимается и превращается в компактную структуру - глобулу, напоминающую жидкую микроскопическую каплю. Понимание деталей такого перехода важно для развития наиболее общих представлений о ходе биологической эволюции, приведшей к возникновению глобулярных белков.

Существуют различные модификации решеточных моделей, например, такие, в которых длины связей между звеньями не имеют фиксированных значений, но способны меняться в определенном интервале, гарантирующем лишь запрет самопересечений цепи именно так устроена широко распространенная модель с "флуктуирующими связями". Однако все решеточные модели объединяет то, что они являются дискретными, то есть число возможных конформаций такой системы всегда конечно (хотя и может составлять астрономическую величину даже при сравнительно небольшом количестве звеньев в цепи). Все дискретные модели обладают очень высокой вычислительной эффективностью, но, как правило, могут исследоваться только методом Монте-Карло.

Для ряда случаев используются континуальные обобщенные модели полимеров, которые способны менять конформацию непрерывным образом. Простейший пример - цепь, составленная из заданного числа N твердых шаров, последовательно соединенных жесткими или упругими связями. Такие системы могут исследоваться как методом Монте-Карло, так и методом молекулярной динамики.

Главная > Лекция

ЛЕКЦИЯ

Тема: Компьютерный эксперимент. Анализ результатов моделирования

Чтобы дать жизнь новым конструкторским разработкам, вне-дрить новые технические решения в производство или прове-рить новые идеи, нужен эксперимент. Эксперимент - это опыт, который производится с объектом или моделью. Он заключается в выполнении некоторых действий и определении, как реагиру-ет экспериментальный образец на эти действия. В школе вы проводите опыты на уроках биологии, химии, физики, географии. Эксперименты проводят при испытании новых образцов продукции на предприятиях. Обычно для этого используется специально создаваемая установка, позволяющая провести эксперимент в лабораторных условиях, либо сам реальный продукт подвергается всякого рода испытаниям (натурный эксперимент). Для исследования, к примеру, эксплуатацион-ных свойств какого-либо агрегата или узла его помещают в тер-мостат, замораживают в специальных камерах, испытывают на вибростендах, роняют и т. п. Хорошо, если это новые часы или пылесос - не велика потеря при разрушении. А если са-молет или ракета? Лабораторные и натурные эксперименты требуют больших ма-териальных затрат и времени, но их значение, тем не менее, очень велико. С развитием компьютерной техники появился новый уни-кальный метод исследования - компьютерный эксперимент. В помощь, а иногда и на смену экспериментальным образцам и испытательным стендам во многих случаях пришли компьютер-ные исследования моделей. Этап проведения компьютерного эксперимента включает две стадии: составление плана экспери-мента и проведение исследования. План эксперимента План эксперимента должен четко отражать последовательность работы с моделью. Первым пунктом такого плана всегда являет-ся тестирование модели. Тестирование - процесс проверки правильности построенной модели . Тест - набор исходных данных , позволяющий определить пра- вильность построения модели . Чтобы быть уверенным в правильности получаемых результа-тов моделирования, надо:

    проверить разработанный алгоритм построения модели; убедиться, что построенная модель правильно отражает свойства оригинала, которые учитывались при моделиро-вании.
Для проверки правильности алгоритма построения модели ис-пользуется тестовый набор исходных данных, для которых ко-нечный результат заранее известен или предварительно опреде-лен другими способами. Например, если вы используете при моделировании расчет-ные формулы, то надо подобрать несколько вариантов исход-ных данных и просчитать их «вручную». Это тестовые задания. Когда модель построена, вы проводите тестирование с теми же вариантами исходных данных и сравниваете результаты мо-делирования с выводами, полученными расчетным путем. Если результаты совпадают, то алгоритм разработан верно, если нет - надо искать и устранять причину их расхождения. Тес-товые данные могут совершенно не отражать реальную ситуа-цию и не нести смыслового содержания. Однако полученные в процессе тестирования результаты могут натолкнуть вас на мысль об изменении исходной информационной или знаковой модели, прежде всего в той ее части, где заложено смысловое содержание. Чтобы убедиться, что построенная модель отражает свойства оригинала, которые учитывались при моделировании, надо по-добрать тестовый пример с реальными исходными данными. Проведение исследования После тестирования, когда у вас появилась уверенность в пра-вильности построенной модели, можно переходить непосредст-венно к проведению исследования. В плане должен быть предусмотрен эксперимент или серия экспериментов, удовлетворяющих целям моделирования. Каж-дый эксперимент должен сопровождаться осмыслением итогов, что служит основой анализа результатов моделирования и при-нятия решений. Схема подготовки и проведения компьютерного эксперимента приведена на рисунке 11.7.

ТЕСТИРОВАНИЕ МОДЕЛИ

ПЛАН ЭКСПЕРИМЕНТА


ПРОВЕДЕНИЕ ИССЛЕДОВАНИЯ


АНАЛИЗ РЕЗУЛЬТАТОВ


Рис. 11.7. Схема компьютерного эксперимента

Анализ результатов моделирования

Конечная цель моделирования - принятие решения, которое должно быть выработано на основе всестороннего анализа ре-зультатов моделирования. Этот этап решающий - либо вы про-должаете исследование, либо заканчиваете. На рисунке 11.2 видно, что этап анализа результатов не может существовать ав-тономно. Полученные выводы часто способствуют проведению дополнительной серии экспериментов, а подчас и изменению за-дачи. Основой выработки решения служат результаты тестирова-ния и экспериментов. Если результаты не соответствуют целям поставленной задачи, значит, на предыдущих этапах были допу-щены ошибки. Это может быть либо неправильная постановка задачи, либо слишком упрощенное построение информационной модели, либо неудачный выбор метода или среды моделирова-ния, либо нарушение технологических приемов при построении модели. Если такие ошибки выявлены, то требуется корректи-ровка модели, то есть возврат к одному из предыдущих этапов. Процесс повторяется до тех пор, пока результаты эксперимента не будут отвечать целям моделирования. Главное, надо всегда помнить: выявленная ошибка - тоже результат. Как гласит народная мудрость, на ошибках учатся. Об этом писал и великий русский поэт А. С. Пушкин: О, сколько нам открытий чудных Готовят просвещенья дух И опыт, сын ошибок трудных, И гений, парадоксов друг, И случай, бог изобретатель...

Контрольные вопросы и задания

    Назовите два основных типа постановки задач моделиро-вания.
    В известном «Задачнике» Г. Остера есть следущая задача:
Злая колдунья, работая не покладая рук, превращает в гу-сениц по 30 принцесс в день. Сколько дней ей понадобится, чтобы превратить в гусениц 810 принцесс? Сколько принцесс в день придется превращать в гусениц, чтобы управиться с ра-ботой за 15 дней? Какой вопрос можно отнести к типу «что будет, если...», а ка-кой - к типу «как сделать, чтобы...»?
    Перечислите наиболее известные цели моделирования. Формализуйте шутливую задачу из «Задачника» Г. Остера:
Из двух будок, находящихся на расстоянии 27 км одна от другой, навстречу друг другу выскочили в одно и то же время две драчливые собачки. Первая бежит со скоростью 4 км/час, а вторая - 5 км/час. Через сколько времени начнется драка? Дома: §11.4, 11.5.
  1. Понятие об информации

    Документ

    Окружающий мир очень разнообразен и состоит из огромного количества взаимосвязанных объектов. Чтобы найти свое место в жизни, вы с раннего детства вместе с родителями, а затем с учи­телями шаг за шагом познаете все это многообразие.

  2. Выпускающий редактор В. Земских Редактор Н. Федорова Художественный редактор Р. Яцко Верстка Т. Петрова Корректоры М. Одинокова, М. Щукина ббк 65. 290-214

    Книга

    Ш39 Организационная культура и лидерство / Пер. с англ. под ред. В. А. Спивака. - СПб: Питер, 2002. - 336 с: ил. - (Серия «Теория и практика менеджмента»).

  3. Учебно-методический комплекс по дисциплине: «Маркетинг» специальность: 080116 «Математические методы в экономике»

    Учебно-методический комплекс

    Область профессиональной деятельности: анализ и моделирование экономических процессов и объектов на микро, макро и глобальном уровнях; мониторинг экономико-математических моделей; прогнозирование, программирование и оптимизация экономических систем.

У современного компьютера много направлений исполь­зования. Среди них, как вы знаете, особое значение имеют возможности компьютера как средства автоматизации ин­формационных процессов. Но не менее значимы и его воз­можности как инструмента проведения эксперименталь­ной работы и анализа ее результатов.

Вычислительный эксперимент давно известен в науке. Вспомните открытие планеты Нептун «на кончике пера». Нередко результаты научных исследований считаются до­стоверными, только если они могут быть представлены в виде математических моделей и подтверждены математиче­скими расчетами. Причем, относится это не только к физике


или техническому конструированию, но и к социологии, лингвистике, маркетингу - традиционно гуманитарным дисциплинам, далеким от математики.

Вычислительный эксперимент является теоретическим методом познания. Развитием этого метода является чис­ленное моделирование - сравнительно новый научный ме­тод, получивший широкое распространение благодаря появ­лению ЭВМ.

Численное моделирование широко используется и на практике, и при проведении научных исследований.

Пример. Без построения математических моделей и проведения самых разных расчетов над постоянно изменяющимися данными, поступающими с измерительных приборов, невозможна работа автоматических производственных линий, автопилотов, станций слежения, систем автома­тической диагностики. Причем для обеспечения надеж­ности систем расчеты должны проводиться в режиме ре­ального времени, а их погрешности могут составлять миллионные доли процента.

Пример. Современного астронома чаще можно увидеть не у оку­ляра телескопа, а перед дисплеем компьютера. Причем не только теоретика, но и наблюдателя. Астрономия - необычная наука. Она, как правило, не может непосред­ственно экспериментировать с объектами исследований. Различные виды излучения (электромагнитное, гравита­ционное, потоки нейтрино или космических лучей) аст­рономы только «подсматривают» и «подслушивают». Значит, нужно научиться извлекать максимум информа­ции из наблюдений и воспроизводить их в расчетах для проверки гипотез, описывающих эти наблюдения. При­менения компьютеров в астрономии, как и в других нау­ках чрезвычайно разнообразны. Это и автоматизация на­блюдений, и обработка их результатов (астрономы видят изображения не в окуляре, а на мониторе, соединенным со специальными приборами). Компьютеры также необ­ходимы для работы с большими каталогами (звезд, спек-тальных анализов, химических соединений и пр.).

Пример. Всем известно выражение «буря в стакане воды». Чтобы детально исследовать такой сложный гидродинамиче­ский процесс, как буря, необходимо привлекать слож­ные методы численного моделирования. Поэтому в круп­ных гидрометеоцентрах находятся мощные компьюте­ры: «буря разыгрывается» в кристалле процессора компьютера.


Даже если вы проводите не очень сложные вычисления, но вам нужно повторить их миллион раз, то лучше один раз написать программу, а компьютер повторит ее столько раз, сколько это нужно (ограничением, естественно, будет быст­родействие компьютера).

Численное моделирование может быть самостоятельным методом исследования, когда интерес представляют только значения каких-то показателей (например, себестоимости продукции или интегрального спектра галактики), но чаще оно выступает одним из средств построения компьютерных моделей в более широком смысле этого термина.

Исторически сложилось так, что первые работы по компьютерному моделированию были связаны с физикой, где с помощью численного моделирования решался целый класс задач гидравлики, фильтрации, теплопереноса и теп­лообмена, механики твердого тела и т. п. Моделирование, в основном, представляло собой решение сложных нелиней­ных задач математической физики и по существу было, ко­нечно, моделированием математическим. Успехи математи­ческого моделирования в физике способствовали распро­странению его на задачи химии, электроэнергетики, биоло­гии, причем схемы моделирования не слишком отличались друг от друга. Сложность решаемых на основе моделирова­ния задач ограничивалась лишь мощностью имеющихся ЭВМ. Данный вид моделирования широко распространен и в настоящеее время. Более того, за время развития численно­го моделирования накоплены целые библиотеки подпрог­рамм и функций, облегчающих применение и расширяю­щих возможности моделирования. И все же в настоящее время понятие «компьютерное моделирование» обычно свя­зывают не с фундаментальными естественно-научными дис­циплинами, а в первую очередь с системным анализом сложных систем с позиций кибернетики (то есть с позиций управления, самоуправления, самоорганизации). И сейчас компьютерное моделирование широко используется в биоло­гии, макроэкономике, при создании автоматизированных систем управления и пр.

Пример. Вспомните эксперимент Пиаже, описанный в предыду­щем параграфе. Его, конечно же можно было бы провес­ти не с реальными предметами, а с анимационным изоб­ражением на экране дисплея. Но ведь движение игрушек можно было бы заснять на обычную киноплен­ку и демонстрировать ее по телевизору. Целесообразно ли называть использование компьютера в этом случае компьютерным моделированием?


Пример. Моделью полета тела, брошенного вертикально вверх или под углом к горизонту, является, например, график высоты тела в зависимости от времени. Построить его можно

а) на листе бумаги по точкам;

б) в графическом редакторе по тем же точкам;

в) с помощью программы деловой графики, например, в
электронных таблицах;

г) написав программу, которая не только выводит на эк­
ран траекторию полета, но и позволяет задавать различ­
ные исходные данные (угол наклона, начальную ско­
рость).

Почему вариант б) не хочется называть компьютерной моделью, а варианты в) и г) вполне соответствуют этому названию?

Под компьютерной моделью часто понимают программу (или программу плюс специальное устройство), которая обеспечивает имитацию характеристик и поведения опреде­ленного объекта. Результат выполнения этой программы также называют компьютерной моделью.

В специальной литературе термин «компьютерная мо­дель» более строго определяется так:

Условный образ объекта или некоторой системы объектов (процессов, явлений), описанный с помощью взаимосвя­занных компьютерных таблиц, блок-схем, диаграмм, гра­фиков, рисунков, анимационных фрагментов, гипертек­стов и так далее и отображающий структуру (элементы и взаимосвязи между ними) объекта. Компьютерные моде­ли такого вида называют структурно-функциональны­ми;

Отдельную программу или совокупность программ, позво­ляющих с помощью последовательности вычислений и графического отображения их результатов воспроизво­дить (имитировать) процессы функционирования объекта при условии воздействия на него различных, как правило случайных, факторов. Такие модели называют имитаци­онными.

Компьютерные модели могут быть простыми и сложны­ми. Простые модели вы неоднократно создавали, когда изу­чали программирование или строили свою базу данных. В системах трехмерной графики, экспертных системах, авто­матизированных системах управления строятся и использу­ются очень сложные компьютерные модели.


Пример. Идея построить модель деятельности человека с помо­щью компьютера не нова, и трудно найти такую область деятельности, в которой ее не пытались бы реализовать. Экспертные системы - компьютерные программы, мо­делирующие действия эксперта-человека при решении задач в какой-либо предметной области на основе накоп­ленных знаний, составляющих базу знаний. ЭС решают задачу моделирования умственной деятельности. Из-за сложности моделей разработка ЭС занимает, как прави­ло, несколько лет.

Современные экспертные системы кроме базы знаний имеют еще и базу прецедентов - например, результаты обследования реальных людей и информацию о последу­ющей успешности/неуспешности их деятельности. Для примера, база прецедентов экспертной системы Нью-Йоркской полиции - 786 000 чел., Центра «Хоб­би» (кадровая политика на предприятии) - 512 000 чел., причем по словам специалистов этого центра, раз­рабатываемая ими ЭС заработала с ожидаемой точно­стью, только когда база перевалила за 200 000 человек, на ее создание ушло 6 лет.

Пример. Прогресс в создании компьютерных графических изоб­ражений продвинулся от каркасных образов трехмерных моделей с простым полутоновым изображением до совре­менных реалистических картинок, являющихся образ­цами искусства. Это явилось результатом успеха в более точном определении среды моделирования. Прозрач­ность, отражение, тени, модели освещения и свойства поверхности - вот несколько областей, где напряженно работают группы исследователей, постоянно предлагаю­щие новые алгоритмы создания все более реалистичных искусственных образов. Сегодня эти методы применяют­ся и для создания качественной анимации.

Практические потребности в компьютерном моделирова­нии ставят задачи перед разработчиками аппаратных средств компьютера. То есть метод активно влияет не только на появление все новых и новых программ, но и на разви­тие технических средств.

Пример. Впервые о компьютерной голографии заговорили в 80-х годах. Так, в системах автоматизированного проектиро­вания, в геоинформационных системах было бы неплохо иметь возможность не просто посмотреть интересующий объект в трехмерном виде, но представить его в виде го-лограмы, которую можно повернуть, наклонить, загля­нуть внутрь нее. Чтобы создать голографическую кар­тинку, полезную в реальных приложениях, необходимы


голографической

картинки

дисплеи с гигантским количеством пикселей - до мил­лиарда. Сейчас такая работа активно ведется. Одновре­менно с разработкой голографического дисплея полным ходом идет работа по созданию трехмерной рабочей стан­ции на основе принципа, получившего название «подме­на реальности». За этим термином стоит идея широкого применения всех тех естественных и интуитивных мето­дов, которые человек использует при взаимодействии с натурными (вещественно-энергетическими) моделями, но при этом делается упор на их всестороннее улучше­ние и развитие с помощью уникальных возможностей цифровых систем. Предполагается, например, что будет возможность манипулирования и взаимодействия с компьютерными голограммами в реальном времени с по­мощью жестов и прикосновений.

Компьютерное моделирование имеет следующие преиму­щества:

Обеспечивает наглядность;

Доступно в использовании.

Основное преимущество компьютерного моделирования заключается в том, что оно позволяет не только пронаблю­дать, но и предсказать результат эксперимента при каких-то особых условиях. Благодаря этой возможности этот метод нашел применение в биологии, химии, социологии, эколо­гии, физике, экономике и многих других сферах знания.


Компьютерное моделирование широко используется в обучении. С помощью специальных программ можно по­смотреть модели таких явлений, как явления микромира и мира с астрономическими размерами, явления ядерной и квантовой физики, развитие растений и превращения ве­ществ при химических реакциях.

Подготовка специалистов многих профессий, особенно та­ких, как авиадиспетчеры, пилоты, диспетчеры атомных и электростанций, осуществляется с помощью тренажеров, управляемых компьютером, моделирующим реальные ситу­ации, в том числе аварийные.

На компьютере можно провести лабораторные работы, если нет необходимых реальных устройств и приборов или если решение задачи требует применения сложных матема­тических методов и трудоемких расчетов.

Компьютерное моделирование дает возможность «ожи­вить» изучаемые физические, химические, биологические, социальные законы, поставить с моделью ряд эксперимен­тов. Но не стоит забывать, что все эти эксперименты носят весьма условный характер и познавательная ценность их тоже весьма условна.

Пример. До практического использования реакции ядерного рас­пада физики-ядерщики просто не знали о вреде радиа­ции, но первое массовое применение «достижений» (Хи­росима и Нагасаки) четко показало, насколько радиация

с опасна для человека. Начни физики с ядерных электро-

станций, человечество долго еще не узнало бы о вреде радиации. Достижение химиков начала прошлого века -мощнейший пестицид ДДТ - достаточно долго считался абсолютно безопасным для человека-

В условиях применения мощных современных техноло­гий, широкого тиражирования и бездумного использования ошибочных программных продуктов такие узкоспециаль­ные, казалось бы, вопросы, как адекватность компьютерной модели реальности, могут приобрести весомое общечелове­ческое значение.

Компьютерные эксперименты - это инструмент ис­следования моделей, а не природных или социальных яв­лений.

Поэтому одновременно с компьютерным экспериментом всегда должен идти натурный, чтобы исследователь, сравни­вая их результаты, мог оценить качество соответствующей модели, глубину наших представлений о сути явлений при-


роды. Не стоит забывать, что физика, биология, астроно­мия, информатика это науки о реальном мире, а не о вирту­альной реальности.

В научных исследованиях, как фундаментальных так и практически направленных (прикладных), компьютер не­редко выступает как необходимый инструмент эксперимен­тальной работы.

Компьютерный эксперимент чаще всего связан:

С проведением сложных математических расчетов (чис­
ленное моделирование);

С построением и исследованием наглядных и/или дина­
мических моделей (компьютерное моделирование).

Под компьютерной моделью понимается программа (или программа в совокупности со специальным устройст­вом), которая обеспечивает имитацию характеристик и по­ведения определенного объекта, а также результат выполне­ния этой программы в виде графических изображений (неподвижных или динамических), числовых значений, таб­лиц и пр.

Различают структурно-функциональные и имитационные компьютерные модели.

Структурно-функциональная компьютерная модель - это условный образ объекта или некоторой системы объек­тов (процессов, явлений), описанный с помощью взаимосвя­занных компьютерных таблиц, блок-схем, диаграмм, графи­ков, рисунков, анимационных фрагментов, гипертекстов и так далее и отображающий структуру объекта или его пове­дение.

Имитационная компьютерная модель - это отдельная программа или программный комплекс, позволяющий с по­мощью последовательности вычислений и графического ото­бражения их результатов воспроизводить (имитировать) процессы функционирования объекта при условии воздейст­вия на него различных случайных факторов.

Компьютерное моделирование - метод решения задачи анализа или синтеза системы (чаще всего сложной системы) на основе использования ее компьютерной модели.


Преимущества компьютерного моделирования заключа­ются в том, что оно:

Позволяет не только пронаблюдать, но и предсказать ре­зультат эксперимента при каких-то особых условиях;

Позволяет моделировать и изучать явления, предсказыва­емые любыми теориями;

Является экологически чистым и не представляет опасно­сти для природы и человека;

Обеспечивает наглядность;

Доступно в использовании.

Метод компьютерного моделирования нашел применение в биологии, химии, социологии, экологии, физике, эконо­мике, лингвистике, юриспруденции и многих других сферах знания.

Компьютерное моделирование широко используется в обучении, подготовке и переподготовке специалистов:

Для наглядного представления моделей явлений микро­мира и мира с астрономическими размерами;

Для имитации процессов, происходящих в мире живой и неживой природы

Для моделирования реальных ситуаций управления сложными системами, в том числе аварийных ситуаций;

Для проведения лабораторных работ, когда нет необходи­мых устройств и приборов;

Для решения задач, если при этом требуется применение сложных математических методов и трудоемких расче­тов.

Важно помнить, что на компьютере моделируется не объ­ективная реальность, а наши теоретические представления о ней. Объектом компьютерного моделирования являются ма­тематические и другие научные модели, а не реальные объ­екты, процессы, явления.

Компьютерные эксперименты - это инструмент иссле­дования моделей, а не природных или социальных явлений.

Критерием верности любого из результатов компьютерно­го моделирования был и остается натурный (физический, химический, социальный) эксперимент. В научных и прак­тических исследованиях компьютерный эксперимент может лишь сопутствовать натурному, чтобы исследователь, срав-


нивая их результаты, мог оценить качество модели, глубину наших представлений о сути явлений природы.

Важно помнить, что физика, биология, астрономия, эко­номика, информатика - это науки о реальном мире, а не о
виртуальной реальности.

Задание 1

Письмо, написанное в текстовом редакторе и отправленное по электронной почте, вряд ли кто-нибудь назовет компьютерной моделью.

Текстовые редакторы часто позволяют создавать не только обыч­ные документы (письма, стаьи, отчеты), но и шаблоны докумен­тов, в которых есть постоянная информация, которую пользова­тель не может изменить, есть поля данных, которые заполняются пользователем, а есть поля, в которых автоматиче­ски производятся расчеты на основании введенных данных. Можно ли такой шаблон рассматривать как компьютерную мо­дель? Если да, то что в этом случае является объектом моделиро­вания и какова цель создания подобной модели?

Задание 2

Вы знаете, что перед тем, как создавать базу данных, сначала нужно построить модель данных. Вам также известно, что алго­ритм - это модель деятельности.

И модели данных и алгоритмы чаще всего разрабатываются в расчете на компьютерную реализацию. Можно ли сказать, что в какой-то момент они становятся компьютерной моделью, и если да, то когда это происходит?

Примечание. Проверьте свой ответ на соответствие определению понятия «компьютерная модель».

Задание 3

Опишите этапы построения компьютерной модели на примере разработки программы, имитирующей какое-нибудь физическое явление.

Задание 4

Приведите примеры, когда компьютерное моделирование при­несло реальную пользу и когда оно привело к нежелательным по­следствиям. Подготовьте доклад на эту тему.


Компьютерное моделирование - основа представления знаний в ЭВМ. Компьютерное моделирование для рождения новой информации использует любую информацию, которую можно актуализировать с помощью ЭВМ. Прогресс моделирования связан с разработкой систем компьютерного моделирования, а прогресс в информационной технологии - с актуализацией опыта моделирования на компьютере, с созданием банков моделей, методов и программных систем, позволяющих собирать новые модели из моделей банка.

Разновидность компьютерного моделирования - вычислительный эксперимент, т. е. эксперимент, осуществляемый экспериментатором над исследуемой системой или процессом с помощью орудия эксперимента - компьютера, компьютерной среды, технологии.

Вычислительный эксперимент становится новым инструментом, методом научного познания, новой технологией также из-за возрастающей необходимости перехода от исследования линейных математических моделей систем (для которых достаточно хорошо известны или разработаны методы исследования, теория) к исследованию сложных и нелинейных математических моделей систем (анализ которых гораздо сложнее). Грубо говоря, наши знания об окружающем мире линейны, а процессы в окружающем мире нелинейны.

Вычислительный эксперимент позволяет находить новые закономерности, проверять гипотезы, визуализировать ход событий и т. д.

Чтобы дать жизнь новым конструкторским разработкам, внедрить новые технические решения в производство или проверить новые идеи, нужен эксперимент. В недалеком прошлом такой эксперимент можно было провести либо в лабораторных условиях на специально создаваемых для него установках, либо на натуре, т. е. на настоящем образце изделия, подвергая его всяческим испытаниям.

С развитием вычислительной техники появился новый уникальный метод исследования - компьютерный эксперимент. Компьютерный эксперимент включает некоторую последовательность работы с моделью, совокупность целенаправленных действий пользователя над компьютерной моделью.

Этап 4. Анализ результатов моделирования.

Конечная цель моделирования - принятие решения, которое должно быть выработано на основе всестороннего анализа полученных результатов. Этот этап решающий - либо вы продолжаете исследование, либо заканчиваете. Возможно, вам известен ожидаемый результат, тогда необходимо сравнить полученный и ожидаемый результаты. В случае совпадения вы сможете принять решение.

Основой для выработки решения служат результаты тестирования и экспериментов. Если результаты не соответствуют целям поставленной задачи, значит, допущены ошибки на предыдущих этапах. Это может быть либо слишком упрощенное построение информационной модели, либо неудачный выбор метода или среды моделирования, либо нарушение технологических приемов при построении модели. Если такие ошибки выявлены, то требуется корректировка модели , т. е. возврат к одному из предыдущих этапов. Процесс повторяется до тех пор, пока результаты эксперимента не будут отвечать целям моделирования. Главное, надо всегда помнить: выявленная ошибка - тоже результат. Как говорит народная мудрость, на ошибках учатся.

Программы моделирования

ANSYS - универсальная программная система конечно-элементного (МКЭ ) анализа, существующая и развивающаяся на протяжении последних 30 лет, является довольно популярной у специалистов в области компьютерного инжиниринга (CAE , Computer-Aided Engineering) и КЭ решения линейных и нелинейных, стационарных и нестационарных пространственных задач механики деформируемого твёрдого тела и механики конструкций (включая нестационарные геометрически и физически нелинейные задачи контактного взаимодействия элементов конструкций), задач механики жидкости и газа, теплопередачи и теплообмена, электродинамики, акустики, а также механики связанных полей. Моделирование и анализ в некоторых областях промышленности позволяет избежать дорогостоящих и длительных циклов разработки типа «проектирование - изготовление - испытания». Система работает на основе геометрического ядра Parasolid .

AnyLogic - программное обеспечение для имитационного моделирования сложных систем и процессов , разработанное российской компанией «Экс Джей Текнолоджис» (англ. XJ Technologies ). Программа обладает графической средой пользователя и позволяет использовать язык Java для разработки моделей .

Модели AnyLogic могут быть основаны на любой из основных парадигм имитационного моделирования: дискретно-событийное моделирование , системная динамика , и агентное моделирование .

Системная динамика и дискретно-событийное (процессное) моделирование, под которым мы понимаем любое развитие идей GPSS - это традиционные устоявшиеся подходы, агентное моделирование - относительно новый. Системная динамика оперирует в основном с непрерывными во времени процессами, тогда как дискретно-событийное и агентное моделирование - с дискретными.

Системная динамика и дискретно-событийное моделирование исторически преподаются совершенно разным группам студентов: менеджмент, инженеры по организации производства и инженеры-разработчики систем управления. В результате возникли три различных практически не пересекающихся сообщества, которые почти никак не общаются друг с другом.

Агентное моделирование до недавнего времени было строго академическим направлением. Однако, растущий спрос на глобальную оптимизацию со стороны бизнеса, заставил ведущих аналитиков обратить внимание именно на агентное моделирование и его объединение с традиционными подходами с целью получения более полной картины взаимодействия сложных процессов различной природы. Так родился спрос на программные платформы, позволяющие интегрировать различные подходы.

Теперь рассмотрим подходы имитационного моделирования на шкале уровня абстракции. Системная динамика, заменяя индивидуальные объекты их агрегатами, предполагает наивысший уровень абстракции. Дискретно-событийное моделирование работает в низком и среднем диапазоне. Что же касается агентного моделирования, то оно может применяться практически на любом уровне и в любых масштабах. Агенты могут представлять пешеходов, автомобили или роботов в физическом пространстве, клиента или продавца на среднем уровне, или же конкурирующие компании на высоком.

При разработке моделей в AnyLogic можно использовать концепции и средства из нескольких методов моделирования, например, в агентной модели использовать методы системной динамики для представления изменений состояния среды или в непрерывной модели динамической системы учесть дискретные события. Например, управление цепочками поставок при помощи имитационного моделирования требует описания участников цепи поставок агентами: производители, продавцы, потребители, сеть складов. При этом производство описывается в рамках дискретно-событийного (процессного) моделирования, где продукт или его части - это заявки, а автомобили, поезда, штабелёры - ресурсы. Сами поставки представляются дискретными событиями, но при этом спрос на товары может описываться непрерывной системно-динамической диаграммой. Возможность смешивать подходы позволяет описывать процессы реальной жизни, а не подгонять процесс под доступный математический аппарат.

LabVIEW (англ. Lab oratory V irtual I nstrumentation E ngineering W orkbench) - это среда разработки и платформа для выполнения программ, созданных на графическом языке программирования «G» фирмы National Instruments (США). Первая версия LabVIEW была выпущена в 1986 году для Apple Macintosh , в настоящее время существуют версии для UNIX , GNU/Linux , Mac OS и пр., а наиболее развитыми и популярными являются версии для Microsoft Windows .

LabVIEW используется в системах сбора и обработки данных, а также для управления техническими объектами и технологическими процессами. Идеологически LabVIEW очень близка к SCADA -системам, но в отличие от них в большей степени ориентирована на решение задач не столько в области АСУ ТП , сколько в области АСНИ .

MATLAB (сокращение от англ. « Matrix Laboratory » ) - термин, относящийся к пакету прикладных программ для решения задач технических вычислений, а также к используемому в этом пакете языку программирования. MATLAB используют более 1 000 000 инженерных и научных работников, он работает на большинстве современных операционных систем , включая GNU/Linux , Mac OS , Solaris и Microsoft Windows .

Maple - программный пакет, система компьютерной алгебры . Является продуктом компании Waterloo Maple Inc., которая с 1984 года выпускает и продвигает на рынке программные продукты, ориентированные на сложные математические вычисления, визуализацию данных и моделирование.

Система Maple предназначена для символьных вычислений , хотя имеет ряд средств и для численного решения дифференциальных уравнений и нахождения интегралов . Обладает развитыми графическими средствами. Имеет собственный язык программирования , напоминающий Паскаль .

Mathematica - система компьютерной алгебры компании Wolfram Research . Содержит множество функций как для аналитических преобразований, так и для численных расчётов. Кроме того, программа поддерживает работу с графикой и звуком , включая построение двух- и трёхмерных графиков функций, рисование произвольных геометрических фигур , импорт и экспорт изображений и звука.

Инструменты прогнозирования - программные продукты, имеющие функции расчёта прогнозов. Прогнозирование - один из важнейших видов деятельности человека на сегодняшний день. Ещё в древние времена прогнозы позволяли людям рассчитывать периоды засух, даты солнечных и лунных затмений и многих других явлений. С появлением вычислительной техники прогнозирование получило мощнейший толчок развития. Одним из первых применений вычислительных машин был расчёт баллистической траектории снарядов, то есть, фактически, прогноз точки падения снаряда на землю. Такой вид прогноза называется статическим прогнозом. Существуют две основные категории прогнозов: статические и динамические. Ключевое отличие состоит в том что динамические прогнозы предоставляют информацию о поведении исследуемого объекта на протяжении какого-либо значительного интервала времени. В свою очередь, статические прогнозы отражают состояние исследуемого объекта лишь в единственный момент времени и, как правило, в таких прогнозах фактор времени, в котором объект претерпевает изменения, играет незначительную роль. На сегодняшний день существует большое количество инструментов, позволяющих строить прогнозы. Все они могут быть подвергнуты классификации по многим признакам:

Название инструмента

Сфера применения

Реализуемые модели

Требуемая подготовка пользователя

Готовность к эксплуатации

Microsoft Excel , OpenOffice.org

широкого назначения

алгоритмические, регрессионные

базовые знания статистики

требуется значительная доработка (реализация моделей)

Statistica , SPSS , E-views

исследовательская

широкий спектр регрессионных, нейросетевые

коробочный продукт

Matlab

исследовательская, разработка приложений

алгоритмические, регрессионные, нейросетевые

специальное математическое образование

требуется программирование

SAP APO

бизнес-прогнозирование

алгоритмические

не требуются глубокие знания

ForecastPro , ForecastX

бизнес-прогнозирование

алгоритмические

не требуются глубокие знания

коробочный продукт

Logility

бизнес-прогнозирование

алгоритмические, нейросетевые

не требуются глубокие знания

требуется значительная доработка (под бизнес-процессы)

ForecastPro SDK

бизнес-прогнозирование

алгоритмические

требуются базовые знания статистики

требуется программирование (интеграция с ПО)

iLog , AnyLogic , iThink , Matlab Simulink , GPSS

разработка приложений, моделирование

имитационные

требуется специальное математическое образование

требуется программирование (под специфику области)

ПК ЛИРА - многофункциональный программный комплекс, предназначенный для проектирования и расчета машиностроительных и строительных конструкций различного назначения. Расчеты в программе выполняются как на статические, так и на динамические воздействия. Основой расчётов является метод конечных элементов (МКЭ). Различные подключаемые модули (процессоры) позволяют делать подбор и проверку сечений стальных и железобетонных конструкций, моделировать грунт, рассчитывать мосты и поведение зданий в период монтажа и т. д.

Компьютерный эксперимент с моделью системы при ее исследовании и проектировании проводится с целью получения информации о характеристиках процесса функционирования рассматриваемого объекта. Основная задача планирования компьютерных экспериментов – получение необходимой информации об исследуемой системе при ограничениях на ресурсы (затраты машинного времени, памяти и т. п.). К числу частных задач, решаемых при планировании компьютерных экспериментов, относятся задачи уменьшения затрат машинного времени на моделирование, увеличения точности и достоверности результатов моделирования, проверки адекватности модели и т. д.

Эффективность компьютерных экспериментов с моделями существенно зависит от выбора плана эксперимента, так как именно план определяет объем и порядок проведения вычислений на ЭВМ, приемы накопления и статистической обработки результатов моделирования системы. Поэтому основная задача планирования компьютерных экспериментов с моделью формулируется следующим образом: необходимо получить информацию об объекте моделирования, заданном в виде моделирующего алгоритма (программы), при минимальных или ограниченных затратах машинных ресурсов на реализацию процесса моделирования.

Преимуществом компьютерных экспериментов перед натурным является возможность полного воспроизведения условий эксперимента с моделью исследуемой системы. Существенным достоинством перед натурными является простота прерывания и возобновления компьютерных экспериментов, что позволяет применять последовательные и эвристические приемы планирования, которые могут оказаться нереализуемыми в экспериментах с реальными объектами. При работе с компьютерной моделью всегда возможно прерывание эксперимента на время, необходимое для анализа результатов и принятия решений об его дальнейшем ходе (например, о необходимости изменения значений характеристик модели).

Недостатком компьютерных экспериментов является то, что результаты одних наблюдений зависят от результатов одного или нескольких предыдущих, и поэтому в них содержится меньше информации, чем в независимых наблюдениях.

Применительно к базе данных компьютерный эксперимент означает манипулирование данными в соответствии с поставленной целью с помощью инструментов СУБД. Цель эксперимента может быть сформирована на основании общей цели моделирования и с учетом требований конкретного пользователя. Например, имеется база данных «Деканат». Общая цель создания этой модели – управление учебным процессом. При необходимости получения сведений об успеваемости студентов можно сделать запрос, т.е. осуществить эксперимент для выборки нужной информации.

Инструментарий среды СУБД позволяет выполнять следующие операции над данными:

1) сортировка – упорядочение данных по какому–либо признаку;

2) поиск (фильтрация) – выбор данных, удовлетворяющих некоторому условию;

3) создание расчетных полей – преобразование данных в другой вид на основании формул.

Управление информационной моделью неразрывно связано с разработкой различных критериев поиска и сортировки данных. В отличие от бумажных картотек, где сортировка возможна по одному–двум критериям, а поиск вообще проводится вручную – перебором карточек, компьютерные базы данных позволяют задавать любые формы сортировки по различным полям и разнообразные критерии поиска. Компьютер без временных затрат по заданному критерию отсортирует или выберет нужную информацию.

Для успешной работы с информационной моделью программные среды баз данных позволяют создавать расчетные поля, в которых исходная информация преобразуется в другой вид. Например, по оценкам в семестре с помощью специальной встроенной функции можно рассчитать средний балл успеваемости студента. Такие расчетные поля используются либо как дополнительная информация, либо как критерий для поиска и сортировки.

Компьютерный эксперимент включает две стадии: тестирование (проверка правильности выполнения операций) и проведение эксперимента с реальными данными.

После составления формул для расчетных полей и фильтров необходимо убедиться в правильности их работы. Для этого можно ввести тестовые записи, для которых заранее известен результат операции.

Компьютерный эксперимент завершается выдачей результатов в удобном для анализа и принятия решения виде. Одно из преимуществ компьютерных информационных моделей – возможность создания различных форм представления выходной информации, называемых отчетами. Каждый отчет содержит информацию, отвечающую цели конкретного эксперимента. Удобство компьютерных отчетов заключается в том, что они позволяют сгруппировать информацию по заданным признакам, ввести итоговые поля подсчета записей по группам и в целом по всей базе и в дальнейшем использовать эту информацию для принятия решения.

Среда позволяет создать и хранить несколько типовых, часто используемых форм отчетов. По результатам некоторых экспериментов можно создать временный отчет, который удаляется после копирования его в текстовый документ или распечатки. Некоторые эксперименты вообще не требуют составления отчета. Например, требуется выбрать самого успевающего студента для присвоения повышенной стипендии. Для этого достаточно провести сортировку по среднему баллу оценок в семестре. Искомую информацию будет содержать первая запись в списке студентов.