Где жили организмы во время протерозоя. Развитие жизни на земле - протерозойская эра. Жизнь в кайнозое

Страница 1 из 4

Протерозойская эра, следующая после эры архейской, длилась 2 млрд лет. Протерозойская эра , по мнению ученых, делится на три периода :

  1. Палеопротерозой (2,5 млрд лет - 1,6 млрд лет);
  2. Мезопротерозой (1,6 млрд лет - 1 млрд лет);
  3. Неопротерозой (1 млрд лет - 542 млн лет).
Продолжительность периода Периоды протерозойской эры
2,5 - 2,3 млрд.л.н. Сидерий Палеопротерозой Протерозойская эра
2,3 млрд - 2050 млн.л.н. Риасий
2050 млн - 1800 млн.л.н. Орозирий
1800 млн - 1600 млн.л.н. Статерий
1600 млн - 1400 млн. л.н. Калимий Мезопротерозой
1400 млн - 1200 млн.л.н. Эктазий
1200 млн.л.н. - 1 млрд.л.н. Стений
1 млрд.л.н. - 850 млн.л.н. Тоний Неопротерозой
850 млн.л.н. - 635 млн.л.н. Криогений
635 млн.л.н. - 542 млн.л.н. Эдиакарий

Палеопротерозой

Первый период протерозойской эры продолжается 900 млн лет и, в свою очередь, делится на 4 этапа:

  • Сидерий. Продолжительность составляет 200 млн лет;
  • Риасий. Длится 250 млн лет;
  • Орозирий. Занимает временной промежуток в 250 млн лет;
  • Статерий. Продолжается 200 млн лет.

Вначале палеопротерозоя происходит кислородная революция. Огромная часть живых микроорганизмов на нашей планете в этот временной интервал является анаэробами. Для них кислород - яд. В результате переизбытка кислорода в атмосфере произошло многочисленное вымирание живых существ. На планете остаются лишь те микроорганизмы, которые осуществляют фотосинтез. А также те, которые живут в среде, где отсутствует кислород. Следствием этих событий является Гуронское оледенение, которое длится около 300 млн лет. В конце палеопротерозоя образуется континент Колумбия, формируются горные массивы. В период орозирия в Землю врезаются 2 крупных астероида, следы от которых мы можем наблюдать и сейчас. Один из них падает в Канаде и образует кратер Садбери. След от второго находится в ЮАР - кратер Вредефорт.

Мезопротерозой

Средний период протерозойской эры длится 600 млн лет и состоит из 3 этапов:

  • Калимий (200 млн лет);
  • Эктазий (200 млн лет);
  • Стений (200 млн лет).

Распадается материк Колумбия. Его части найдены в современных Америке, Африке, Сибири, Корее. Формируется новый суперматерик Родиний, который распадается в конце мезопротерозоя. Активно развиваются процессы полового размножения у живых микроорганизмов. Происходит прогресс в эволюции живых существ - в это время у эукариот формируются половые клетки, из которых появляются новые организмы. Ученые утверждают, что именно во время мезопротерозоя были образованы геологические платформы материков, дошедшие до нашего времени. Хотя первоначально они были иных форм и находились в другой последовательности.

Неопротерозой

Последний период протерозойской эры продолжается около 460 млн лет. Состоит он из 3 этапов:

  • Тоний (150 млн лет);
  • Криогений (215 млн лет);
  • Эдиакарий (93 млн лет).

Многочисленные извержения вулканов приводят к тому, что континент Родиний распадается на 8 частей, а единый океан делится на несколько океанов. В период криогения происходит образование материка Паннотия. Еще одно важное событие криогенийского этапа неопротерозоя - второй ледниковый период, который охватывает почти всю поверхность планеты. Продолжается эволюция живых организмов. Появляются животные с мягкой телесной оболочкой и подобием скелета.

Климат протерозойской эры

На основании обнаруженных следов от горных массивов, пустынь, морских отложений и вулканических пород ученые делают выводы о том, что климат протерозойской эры был многообразен, а на Земле происходили активные континентальные преобразования.

Климатические изменения начались приблизительно в конце палеопротерозоя. Произошло уменьшение парникового эффекта, что, в свою очередь, привело к понижению температуры в атмосфере нашей планеты. Эти события положили начало самому длительному ледниковому периоду. А за ним наступил еще один, во время которого температура воздуха на экваторе сравнялась с температурой современного Северного полюса.

Фауна протерозойской эры

Эволюция животного мира протерозойской эры начинается с окончанием оледенения. На самой верхней ступени эволюционной лестницы данной эры, по мнению ученых, стоят ракоскорпионы. Это четырехглазые существа с 12 лапами и телом, состоящим из нескольких разделов и покрытым остроконечными иглами. Грудь и голову надежно защищает крепкий панцирь. Тело ракоскорпионов заканчивается прямым шипом, который соединен с железой, вырабатывающей яд. Этот шип используется животными и для защиты от подобных им существ, и для нападения на более слабых. Размер наиболее крупных особей достигал 3 метра в длину. Самые маленькие были всего 10 см. Этих хищников не останавливали даже твердые раковины брахиопод и моллюсков.

К концу неопротерозоя появляются кольчатые черви и медузы. Позже от них взяли свое происхождение двустворчатые моллюски и членистоногие.

Поскольку в период протерозойской эры на планете преобладала вода, большинство живых организмов существовало в придонных толщах океана. На суше могли выжить только бактерии, которые с легкостью акклиматизировались в новых условиях.

Одним из главных событий в эволюционном процессе стало то, что живые организмы научились взаимодействовать друг с другом для выживания в тяжелых условиях. Они начали совместную жизнь, в которой каждый микроорганизм отвечал за свою функцию. Так развивались первейшие многоклеточные представители фауны. На протяжении всей протерозойской эры клетки совершенствовались, активнее партнерствовали между собой. К середине Протерозоя живые организмы научились самовоспроизведению при половом размножении. В конце эпохи появились гидроподобные существа. К данному временному отрезку относят разделение животных, грибов и растений.

Флора протерозойской эры

Во время протерозойской эры на поверхности Земли была голая пустыня с холодным климатом и частыми оледенениями. Лидерство прокариот сменилось на господство эукариот. Появляются водоросли, крепящиеся ко дну водоемов. В середине периода начинают развиваться низшие грибы.

Новейшими жителями океана становятся жгутиковые - организмы, стоящие на границе между фауной и флорой. Вскоре они разделятся и образуют новые виды растений и животных. После грибов появляются губки, археоциаты и прочие сложные организмы. 650 млн лет назад морские берега начинают зеленеть. Их покрывают единственные на тот момент сложные растения, схожие с водорослями. А произошло это в связи с тем, что в атмосфере Земли, насыщенной кислородом, сформировался озоновый слой, не пропускающий солнечную радиацию.

Полезные ископаемые протерозойской эры

В процессе формирования осадочных отложений активное участие приняли бактерии. Самые крупные месторождения железной руды имеют органическое происхождение. Это продукты жизнедеятельности железобактерий.

К отложениям протерозойской эры относятся многочисленные залежи природных богатств - драгоценные и полудрагоценные камни, золото и серебро, железные и никелевые руды, кварц, кобальт, медь и молибден, висмут и вольфрам, различные радиоактивные минералы. На юге современной Украины в ту эпоху находился океан, окруженный горными массивами. Тысячелетиями горы выветривались и оседали на дне океана. К концу эры на его месте возник горный хребет, а осадочные отложения видоизменились. Так произошло формирование месторождения железной руды в Криворожском бассейне.

Окаменелости Протерозоя

Учеными обнаружены многочисленные окаменелости протерозойской эры . Их называют «акритарх». В переводе с греческого языка это означает - неясное происхождение. Как становится понятно из названия, никто точно не может определить, что это такое. Окаменелости включают в себя частицы живших тогда организмов, которые очень сложно распознать. В некоторых окаменелостях заключены спиралевидные формы жизни, которые половина ученых идентифицирует как водоросли. Другие организмы похожи на предков современных червей. Ученым предстоит непростая работа по определению, к какому виду живых организмов относятся те или иные останки.

Более подробно периоды Протерозойской эры будут рассмотрены в следующих лекциях .

Протерозойская эра берет свое начало больше 2600 миллионов лет назад с погрешность примерно в 100 млн. лет. Данная эпоха существовала на протяжении двух миллиардов лет, и является самой длительной за всю историю существования Земли. Именно в этот период по поверхности Земли начали ползать черви и кишечнополостные (во всяком случае об этом свидетельствуют проведенные анализы). Также отметим существование простейших раковин, которые на то время, представляли из себя сложные организмы. До недавнего времени они были простыми, однако эволюция внесла свои коррективы. А все начиналось с обыкновенных комочков цитоплазмы. Как видим, теория Дарвина лишний раз находит себе подтверждение. Эти частицы появились в морях архея.
Во время одной из раскопок палеонтологи обнаружили шунгит, представляющий собой углеобразный материал. На основании данной находки ученые в свое время сделали много новых открытий. Самым главным из них является аксиома, согласно протерозойская эра известна как период, в котором зародились «углевые» растение. То есть они содержали в себе это вещество, а затем пошли по пути своих «братьев». Обитавшие в протерозойскую эру животные имели известковые раковины. К такому предположению ученые пришли после того как обнаружили мрамор. Данные частицы образовались в процессе эволюции, когда архейская и протерозойская эра начали меняться местами.

Протерозойская эра славится дебютантами подводного мира, ими были жгутиковые, на то время они находились на общей черте между живностью и растительностью. После определенного распада образовавшиеся частицы пошли по своему пути: одни стали водорослями, другие грибами, а остальные перешли под знамена фауны. Теория эволюции коснулась и одноклеточных организмов, которые со временем взяли на себя много функций, таким образом они стали многоклеточными. Теперь каждая группа клеток живого существа стала отвечать за свой участок работы - одни за добывание пищи, другие - за передвижение животного, третьи - за его размножение. Чтобы выжить и дать потомство, организмы пошли по пути все большего усложнения.
Вслед за грибами и растениями появ­ляются микроскопические радиолярии, различ­ные многоклеточные существа - губки, архео­циаты, брахиоподы, брюхоногие моллюски. Это уже достаточно сложно устроенные организмы, ведущие прикрепленный образ жизни. Вершиной эволюционного развития в протерозойской эре становятся крупные хищные членистоногие - .
В те времена большую территорию Земли охватывало море, а потому вся флора и фауна непосредственно зависела от воды. На суше обитали лишь бактерии, поскольку только они удачно пережили процесс акклиматизации, ведь условия в протерозойскую эру значительно изменились. Но ученые даже предположить не могут, как эти организмы внешне выглядели, здесь можно только догадываться. Конечно же, и бактерии, и микроскопические грибы, и водоросли, и жгутиковые продолжали существовать и развиваться, но вместе с ними жизнь на Голубой планете начали осваивать первые представители фауны. В протерозойскую эру животные преимущественно были многоклеточными, в частности это касалось многоклеточных представителей фауны.


Протерозойская эра отличалась разнообразием климата. Подтверждением этому является наличие следов от морей, рук, озер, ледников, пустынь и гор. Морские отложения сегодня расположены в два слоя: они покрываются вулканическими вулканами, а затем еще одним морским слоем. Из-за этого протерозойская эра в горных породах выглядит так, будто Землю смяла какая-то могучая рука. Посему ученые предположили, что в тот период на смену спокойной жизни из гор приходили бурные процессы. В то же время земная кора продолжала бурно «дышать».
Со временем «жизнь» начали многочисленные полезные ископаемые и протерозойская эра – это тот период, когда они появились. Большая часть из них сегодня встречается далеко не часто. В данном случае выделим: золото, медь, вольфрам, мрамор, слюда, железная руда, кристаллы, а также радиоактивные вещества. Интересная жизнь царила в южной части Украины, большую территорию которой охватывало мелкое море. Данный водоем был окружен горными массивами. Постепенно горы выветривались, впоследствии чего образовывались продукты, которые сбрасывались на морское дно. Последний этап протерозоя запомнился возникновением новых гор на местах морских участков. К тому же осадки прошли процесс метаморфизма. Протерозойская эра наградила Украину, поскольку на территории нынешнего Кривого Рога образовалось большое скопление железной руды. В этом городе сегодня стоит «Криворожсталь» – самый крупный в стране металлургический комбинат. В 2004 году работники предприятия добыли 7 миллионов тонн стали.
2 млрд. лет назад мир перевернулся «с ног до головы». Ведь до этого момента атмосфера Земли была практически пустой, то есть не содержала в себе кислорода. Имеющийся газ появлялся лишь в микробных сплетениях. Как только на нашей планете появился воздух, сразу же образовались безкислородные карманы, там собственно говоря и происходил процесс разложения органического вещества. Тем не менее, океан без кислорода мог прожить еще долго времени, а на его дне находились черные илы.
Протерозойская эра – период, в котором свое зарождение начали эукариоты. Они представляют собой организмы, содержащие в себе ядро, там собственно говоря и хранятся гены. Также отметим наличие клеточных органелл (что-то наподобие органа клетки) и склонности к половому размножению. Весь материал, который образовывался впоследствии возникновения данного процесса, содержался в парных хромосомах.
На территории Северной Америки палеонтологи обнаружили полуметровые ленты, имеющие закрученную форму. Согласно результатам экспертизы, их возраст составляет 2,1 млрд. лет. Наверняка в свое время они были водорослями, сегодня же мы можем довольствоваться лишь некоторыми частицами. Ученые не исключают, что эукариоты существовали и до протерозоя, только имели они намного меньшие размеры, нежели раньше. Но по поводу данной версии есть сомнения, поскольку эти организмы незаметны на фоне других останков. Если поперечная длина существа превышало0,75 мм, то скорее всего оно не было бактерией.
Если посмотреть с другой стороны, то появление эукариотов было обязательным. Ведь каждый член микробного сообщества возлагал на себя какие-то функции, и все это производилось в «коллективе». Вероятно, в дальнейшем времени связь увеличилась, клетки стали более заметными. Ученые отмечают схожесть органелл эукариота с некоторыми бактериями, а потому часто и происходят путаницы. Митохондрии играют роль поставщика энергии в клетку.
Также отметим появление в протерозое хлоропластов. По своему облику они схожи с зелеными бактериями или цианобактериями. Они содержатся в водорослях, благодаря чему у последних отмечается фотосинтез. Дабы избежать чрезвычайного происшествия, природа укутала хлоропластов в несколько оболочек.

Когда протерозойская эра образовала эукариотов, свою жизнь начали и жгутики. Именно они обеспечивают перемещение клеток. Доселе неизвестно каким образом они появились, но версии ученых ограничиваются на спироплазме и спирохете. Эти организмы способны генерировать движение бактерий. Чтобы проверить версии нужно «выкачать» спироплазмы из многоклеточных организмов, и тогда станет известно, способствуют они движению или нет. Исследователи на 100% уверены, что жгутики являются фундаментом для развития органов чувств: вкусовых волосок, нервных пучков, а также органов равновесия.
Протерозойская эра известна тем, что именно в данный период Мировой океан начал обретать свой современный вид. В период с 2,4 по 2,1 млрд. год до нашей эры на Земле отмечалось гуронское оледенение. Оно образовалось впоследствии появления кислородной катастрофы, когда атмосфера начала насыщаться большим объемом данного вещества. Все больше начало появляться воды, поскольку метан вступил в химическую реакцию с кислородом, впоследствии чего образовалась вода и углекислый газ. Это привело к уменьшению объема метаногенов.
Некоторые ученые считают, что обледенение началось из-за парадокса слабого Солнца. Такое явление появляется когда звезда излучает мало энергии. Как следствие, на планете отмечается низкая температура и вода замерзает. Вполне вероятно, что в период глобального оледенения на Земле временно перестали появляться новые виды животных и растений.
Периоды протерозойской эры разделяются на 3 части: пелеопротерозой, мезопротерозой и неопреторозой.

Благодаря протерозойской эре мы живём в привычном для нас мире. Но первоначально планета Земля принимала совсем иной вид. В процессе развития появилось многообразие форм жизни.


Содержание статьи:
  1. Периоды протерозоя
  2. Жизнь в протерозое
  3. Ароморфозы протерозойской эры
  4. Формирование континентов

1. Периоды протерозоя

Без сомнения, протерозойская эра была одним из важнейших формирования нашей планеты. Началась она примерно 2,5 млн лет назад и длилась приблизительно 2 млн лет. Многоклеточная жизнь в протерозойскую эру только начинала развиваться, поэтому флора и фауна существенно отличалась от сегодняшней. Греческое слово протерозой переводится как «первичная жизнь» и отображает суть процессов, происходящих на земле в этот интересный период. Также в это время сформировались первые континенты, на что ушло не меньше миллиарда лет. Существуют три периода, на которые делится протерозойская эра . Таблица покажет временные отрезки, соответствующие каждому из них:

Таблица 1

Таблица 2


2. Жизнь в протерозое

Протерозойская эра была и именно ей мы обязаны появлением . Одними из первых представителей жизни были жгутиковые. Считается, что они разделились на растения, грибы и животные в процессе эволюции. В протерозойскую эру стали образовываться многоклеточные организмы, в которых каждая клетка специализировалась на своей специфической деятельности. Со временем организмы становились всё сложнее и сложнее, чтобы как можно лучше приспособиться к суровой протерозойской жизни. Естественно, происходило в недрах океана, который на тот момент занимал большую часть .


Всё изменилось после того, как появились цианобактерии. Они, благодаря процессам фотосинтеза, аналогичным тем, что происходят в современных растениях, начали поглощать углекислый газ и производить кислород, навсегда изменив состав атмосферы. Когда доля кислорода в атмосфере достигла 1%, многие анаэробные одноклеточные начали вымирать, а их место заняли аэробные существа. Цианобактерии тоже не остались без дела, они стали важной частью некоторых многоклеточных организмов, предков современной растительности. Животные протерозойской эры не отличались разнообразием - это были черви, кишечнополостные организмы и простейшие раковины.


После появления первых грибов и растений, начали развиваться более сложные многоклеточные организмы - губки, брюхоногие моллюски, археоциаты. Такое развитие стало возможным благодаря постоянному сотрудничеству клеток между собой, что привело к бурному развитию жизни в протерозойскую эру .

3. Ароморфозы протерозойской эры

Изменения, которые в протерозойскую эру, заложили основу современного мира, каким мы его знаем. Важнейшие ароморфозы этого времени - возникновение органов и тканей. В протерозойскую эру произошло ещё одно важное событие в жизни нашей планеты - атмосфера Земли насытилась кислородом, и образовался озоновый слой, препятствующий проникновению губительной солнечной радиации. Это позволило многоклеточным организмам выбраться из глубин океана на сушу. Считается, что первыми организмами, заселившими сушу, были водоросли.


На этом развитие жизни в протерозойскую эру не закончилось, в дальнейшем начала развиваться двусторонняя симметрия, которая разграничила организмы на спинную и брюшную полость, обозначила их передние и задние стороны. Это серьёзно увеличило жизненную активность организмов, заложив основу для образования хордовых - наиболее высокоорганизованного вида живых существ. Помимо прочего в протерозое развилось половое размножение организмов, что позволило добиться небывалого ранее генетического разнообразия живых существ. Теперь клетка не просто делилась на две части, для успешного размножения требовались отцовская и материнская клетки, которые обменивались генетическим кодом, создавая удивительное многообразие.


4. Формирование континентов

Протерозойской эре мы обязаны не только возникновением живых организмов. Формирование континентов происходило именно в этот период. Примерно 1150 млн лет назад был сформирован первый суперконтинент - Родиния. В учёных кругах есть мнение, что континенты формировались и раньше, но этому нет никаких подтверждений. Также образовался суперокеан, который назвали Мировия. Примерно 700 млн лет назад большая часть суперокеана была покрыта толстым слоем льда.


Приблизительно 800 млн лет назад Родиния начала разделяться под действием тектонических процессов, сопровождавшихся масштабными выбросами лавы. В результате суперконтинент разделился на несколько континентов поменьше, а суперокеан разделился на несколько океанов. Полученные материки не были стабильны. Они постоянно перемещались по бескрайним океаническим просторам, со временем образовав новый суперконтинент - Пангею. Однако, со временем распалась и она, положив начало современным континентам.


Протерозойская эра - время, когда Земля стала той планетой, которую мы знаем и любим. В этот период произошли наиболее важные эволюционные изменения, породившие современную жизнь во всём её удивительном многообразии. Жизнь в протерозойскую эру развивалась очень интенсивно - простейшие одноклеточные организмы эволюционировали до привычных нам хордовых животных. Произошло формирование континентов и насыщение атмосферы кислородом, количество воды на Земле существенно увеличилось, образовав мировой океан. Безусловно, протерозойская эра является наиболее долгим и важным периодом формирования нашей планеты. Да, ещё нужно знать, что в период развития , произошло наиболее длительное оледенение на земле, которое называлось гуронское оледенение , продолжительность которого составляет 300 миллионов лет.

Протерозойская эра

Огромный этап геологического развития, выделенный под названием "протерозой", соответствует времени 1900-570 млн. лет. Он представлен в пределах всех выступов суши разнообразными горными породами огромной мощности, в числе которых видное место занимают породы биогенные.

Бактериальная и водорослевая жизнь в протерозое достигла исключительного размаха и представлена многообразными геологическими факторами - породо- и рудообразователями. Продуктами этой жизнедеятельности были карбонатные осадки открытых водных бассейнов, железные и марганцевые руды, осадочные сульфидные минералы, отложения кремнезема в виде кремнистых сланцев, силицилитов и т. д.

Осадочное отложение железа происходит на Земле во все геологические времена, от архея до современности. Его сущность давно уже разгадана. Это бактериальный процесс, при котором бактерии используют в качестве энергетической базы растворенные закисные соединения железа. Оказывается, при переводе железа в нерастворимое состояние происходит выделение тепла.

Исследования Н. Г. Холодного показали, что железобактерии необычайно распространены в природе. Они проявляют жизнедеятельность обычно в условиях относительно низких температур (0°-16°С), при наличии СO 2 и карбонатных или иных закисных соединений железа в слабокислых или нейтральных средах (рН от 5,8 до 7,6) в присутствии любой концентрации кислорода. В бедных кислородом средах железобактерии развиваются около колоний водорослей. В органических веществах эти бактерии или не нуждаются совершенно, или относятся к ним безразлично, так же как и к наличию света. Железобактерии превращают бикарбонаты железа в гидрат его окиси, причем углекислота является строительным материалом для вещества их клеток.

Биологическое формирование осадочных месторождений железа в огромных масштабах происходило в особенности в протерозое, т. е. в позднем докембрии. Крупнейшие железные месторождения мира принадлежат к группе отложений этого возраста.

Н. Г. Холодный считал, что железобактерии имеют прямое отношение к поведению железа в биосфере, где они выполняют значительную биохимическую работу по окислению закисей железа и превращению их в нерастворимую гидроокись - в железные руды различных типов, по условиям их образования и последующим химическим изменениям, под влиянием различных геологических обстановок (лимониты, гематиты, гётиты, а также силикаты, фосфаты и сульфиды железа). Эти руды очень часто содержат остаточное органическое, по-видимому, бактериальное вещество. Докембрийские руды Кирунавары (Швеция), как правило, содержат до 5% этого органического вещества. Богатейшие месторождения Северной Америки в районе Верхнего озера тоже отложились в раннем протерозое.

К отложениям нижнего протерозоя относятся и криворожские железные руды, а также железные руды Курской и Воронежской областей, Прибалтики. Руды кремнистые. В рудах Кривого Рога и в аналогичных кремнистых рудах Кольского полуострова автор наблюдал настоящие бактериальные структуры, лучше различимые именно в рудах, бедных железом, на фоне светлого кремнезема.

Начало отложений курской железорудной серии датируется 2060 млн. лет, а конец ее формирования - 1500 млн. лет.

И почвы на суше, и водные бассейны протерозоя были широкой ареной деятельности целого ряда групп микроорганизмов, из которых уже тогда эволюционно обособились группы автотрофов, приспособившиеся к освоению реакций распада и преобразования ряда минеральных веществ, связанного с выделением свободной энергии. В породах архея мы не находим зерен пирита, но уже в протерозое пирит отлагался в осадочных породах (пиритизация пород). Значит, в это время появились в массовом количестве окислители серы, а затем и сульфатредуцирующие (разрушающие сернокислые соли) бактерии. Вероятно, существовали и денитрифицирующие бактерии, выделявшие элементарный азот в состав древней атмосферы за счет первичного аммиака и соединений азота, возникших на его основе.

Таким образом, органическая жизнь в виде железобактерий была представлена уже более 2000 млн. лет назад. Для существования этих бактерий был нужен, хотя бы в очень малых количествах, элементарный кислород. Часто они его получали от водорослей, вместе с которыми иногда создавали концентрации гидроокислов железа и карбоната кальция. Иногда деятельность бактерий чередовалась с деятельностью водорослей: лето было временем оптимального развития железобактерий. Часто в докембрии так образовывались строматолиты.

Мир водных растений, настоящих фотосинтезирующих, уже в позднем архее был представлен одноклеточными формами. В следующую эру - в протерозое - во всех водных бассейнах Земли развились разнообразные виды многоклеточных, начавших играть важную роль в породообразовании. Лучистая энергия Солнца, особенно красная часть спектра, и значительные запасы углекислоты в биосфере, пополнявшиеся при вулканических явлениях, способствовали развитию водной растительности не только плавающей, но и донной. Воды морей, еще слабо соленые, но богатые бикарбонатами кальция и магния, легко осаждали их химически. Подщелачивая воду, водоросли играли важную роль в осаждении таких карбонатов, образуя строматолиты.

Развитие многоклеточных водорослей произошло более или менее одновременно с появлением в осадках протерозойской эры слоев плотных известняков. Интересная зависимость существует между вспышками вулканизма и количеством растительного водорослевого вещества. Создается впечатление, что временами развитие водных растений на Земле ограничивалось содержанием углекислоты в биосфере, что подтверждается и сокращением отложения карбонатных отложений вообще.

Протерозой - это эра водорослей и бактерий. Лишь к концу ее возникли самые ранние представители многоклеточных животных - черви, губки и археоциаты. Это была также эра одноклеточных простейших животных, пока слабо вскрываемых при исследовательских работах. Но главнейшими видимыми проявлениями жизни в протерозое были водоросли типа пресноводных. Последние, вероятно, участвовали наряду с бактериями и в развитии на суше процессов почвообразования. Перемыв и смыв рыхлых масс почвенного мелкозема уже играл существенную роль в осадочном породообразовании во внутренних и внешних морях того времени. Жизнь по преимуществу захватывала в то время области морских мелководий. Многоклеточные растения еще не выходили на сушу.

В протерозойскую эру на выступах суши, не имеющих растительного покрова, интенсивно шло выветривание горных пород при участии физико-химических и микробиологических процессов; в морских и пресноводных мелководьях развивались водорослевые банки, часто причудливого облика. Водные растения создавали очень своеобразные накопления известняка и даже древнейшие рифы и банки. "В поле" исследователь далеко не всегда отличит небольшие водорослевые скопления карбонатной породы от вмещающих отложений. Но повторяемость рисунка поверхности породы иногда подсказывает, что найдены остатки ископаемых древнейших водорослей. Порода местами оказывается кривослоистой, и это уже частый признак ее водорослевого происхождения; иногда видны известковые тела, которые при разрушении, при выветривании как бы расслаиваются на отдельные пластинки. Это водорослевые известковые образования - строматолиты, иногда достигающие значительных размеров. Они бывают построены или неправильно, или в виде относительно правильных куполов, состоящих из последовательно наросших друг на друга куполовидных годичных наслоений. В некоторых слоях поперечные сечения водорослевых образований кажутся округлыми, концентрически слоистыми, тогда как в действительности это вытянутые вверх тела, чаще конической формы, до метра в высоту и до полуметра в поперечнике у основания. Иногда это крупные тела с округлой поверхностью, тоже сложенные как будто из отдельных корок. В изломе видно, что первоначально маленькое известковое тело постепенно, слой за слоем, обрастало все больше сверху и с боков, сохраняя почти шаровидную форму. Кое-где на скалах как будто нарисованы колонки, состоящие тоже из наслоений, тянущиеся в одном направлении и время от времени ветвящиеся. Лишь при более внимательном рассмотрении видно, что местами они срастаются друг с другом, отклоняются в ту или другую сторону. В одном случае колонии водоросли построили слой породы толщиной в 36 м при скорости роста 1 мм за год. Это значит, что данный вид водоросли, с ее микроскопическими колониями, просуществовал 36 000 лет.

Специальное лабораторное изучение показывает, как виды микроскопических водорослевых колоний с течением времени непрерывно сменяли друг друга. Отдельные слои породы могут иметь различное строение и слагаться из водорослевых сооружений разной формы и размеров. Часто геологическая жизнь большей части этих ископаемых видов оказывается относительно короткой: смена одних породообразователей другими иногда происходила через 20-30 см, или даже менее. При годичном приросте, составлявшем около 0,1-0,5 мм, длительность жизни видов этих водорослей измеряется всего сотнями лет.


Для изучения строматолитов из них выпиливаются тонкие прозрачные шлифы, определенным образом ориентированные по отношению к направлению нарастания строматолитов. Если сохранность первичных структур водорослевых колоний достаточная, в шлифе можно видеть особенности строения остатков водорослей. При зарисовках с увеличениями в 10-400 раз видны округлые клеточные колонии из окаменевших сгустков слизистой массы в виде тяжей разцой формы, или же удлиненные многорядные нити, тоже с остаточными структурами слизистых масс колоний синезеленых водорослей. Специальными исследованиями шлифов, зарисовок с них и микрофотографий раскрыто огромное разнообразие водорослевых структур из отложений докембрия. Это позволило описать массу видов, принадлежащих к нескольким десяткам родов синезеленых и красных водорослей.


Таким образом, непонятные прежде известковые стяжения - строматолиты, ныне во все большем количестве обнаруживаемые в слоях древних морских и пресноводных отложений и часто составляющие мощные слои породы, оказываются продуктами жизнедеятельности древнейших фотосинтезирующих организмов.

У некоторых водорослей при быстрой фоссилизации газовые пузырьки, оставшиеся в слизи, входили в структуру своеобразных лентовидных строматолитов, обладающих временной способностью подниматься над субстратом. В результате образовывались своеобразные заросли из жестких известковых лент, которые, по мере рассасывания пузырьков кислорода и заполнения их объемов вторичным кальцитом, опускались на дно и накапливались иногда слоем в несколько метров мощностью. Часто водорослевые банки протерозойского времени приобретали общее куполовидное очертание, по-видимому, выгодное в условиях обитания в зоне морского волнения (до глубины в 20 м). Интересно отметить, что лишь в конце кембрийского периода, т. е. много позднее, эта способность некоторых водорослей, обитавших в условиях рифа или мелководной банки, получила очень изящное выражение. Колонии водорослей сезон за сезоном образовывали сотни и тысячи колонок, куполовидные завершения которых вверху составляли в свою очередь более крупные купола, что, несомненно, возникало в процессе естественного отбора под влиянием волн. Рифы менее правильной формы под ударами волн часто разрушались. Между тем куполовидная поверхность групп водорослевых колонок оказывалась защищенной от такого разрушения. Интересно, что в построении колонок иногда участвовали последовательно многие виды водорослей, принадлежащие даже к разным родам. Ниже волновой зоны моря часто многие виды водорослей существовали совместно, по соседству, и образовывали известковые тела, строматолиты разной формы.


Интересный тип остроконических строматолитов образовывали разные виды водорослей, одинаково подвижные колонии которых скользили по субстрату, прежде чем частично от него оторваться. В таких случаях водорослевые банки имели вид остроконечного частокола, с предельными поперечниками до 10-15 см.

Удалось также выяснить, почему часто строматолиты имеют выпуклые вверх, иногда даже куполовидные наслоения. Оказывается, в слизистой массе древнейших синезеленых водорослей выделяемый ими кислород часто застревал в виде пузырьков. Эти пузырьки, стремясь подняться вверх, способствовали скольжению колонии по субстрату к более высоким точкам его поверхности. Образовывались вздутия колоний с тенденцией к образованию конических форм, если пузырьки скапливались в осевой зоне в большем количестве, чем по краям дерновинки водоросли. Часто в последующих наслоениях колонии водоросли скользили вверх по этим вздутиям, а иногда даже частично срывались с субстрата и всплывали в верхние слои воды. Так за столетия и тысячелетия формировались конические, иногда даже остроконечные, строматолиты.

Это свойство проявлялось у многих видов водорослей в разное геологическое время. Конические строматолиты образовывались во все времена докембрия, в разные эпохи кембрия и даже ордовика, исчезнув вообще лишь при общем спаде геологической деятельности водорослей, когда появились древнейшие группы морских беспозвоночных животных.

Таким образом, как конические, так и куполовидные формы строматолитов не имеют прямого отношения к систематике породообразующих водорослей.


Следует учесть, что преобладающее количество видов древнейших водорослей не образовывало четких тел постоянной формы типа строматолитов, а наслаивало осадок, превращая его в плотную породу, где лишь частично сохранялась морфология колоний и продукты их жизнедеятельности, то в виде прихотливо изогнутых столбиков, то в виде неправильных стяжений мелких известковых комочков, подобных цветной капусте. Изученность этих древнейших водорослей еще очень низка. Однако за последние годы в слоях морских отложений, образовавшихся от 1200 до 600 млн. лет назад (синийский период), выявлено большое разнообразие родов и видов синезеленых и красных водорослей, одновременно раскрывших перед нами и абсолютные скорости роста водорослевых колоний и отражение на их жизнедеятельности влияния 11-летних циклов солнечной радиации. По тому, как ориентированы в пространстве скопления карбонатного материала, созданные жизнедеятельностью водорослевых колоний за длительные промежутки времени, можно определить общее направление светового потока.


Самый главный результат исследований состоит в том, что установлена возможность вскрывать остаточные биогенные структуры у карбонатных стяжений водорослевого происхождения. Таким образом был обнаружен целый мир водорослей и водорослевых сообществ, крайне интересный для развития палеоботанической науки, для сопоставления по этим остаткам отложений разных районов, иногда весьма удаленных друг от друга, как, например, Енисейский кряж и Прибайкалье, район Туруханска и бассейн р. Алдана и т. д.

Требуются еще большие усилия, чтобы раскрыть окончательно эволюцию древнейших водорослей, разработать их систематику и определить масштабы их геологической деятельности.


Можно сказать, что водоросли, и только они, примерно за два миллиарда лет извлекли из биосферы колоссальные количества углекислоты, образовав на ее основе столь же колоссальные количества органических веществ. При отмирании колоний эти вещества послужили жизненной средой для развития других организмов (бактерий и простейших) и в итоге - исходным материалом для образования биохимическим путем углеводородных соединений - нефти и горючего газа. Водоросли способствовали отложению на дне древнейших морей огромных количеств углекислого кальция и отчасти магния. Можно считать, что в пределах современных континентов водоросли отложили за время протерозоя карбонатные породы общей мощностью более 1000 м. Эта их геологическая деятельность сопровождалась часто отложением известковых илов при участии "кальциевых" (денитрифицирующих) бактерий. Синезеленым водорослям часто сопутствовали также железобактерии, иногда господствовавшие в межвегетационные сезоны и образовывавшие в строма толитах железистые пленки.

Систематически очищая биосферу от углекислого газа и бикарбонатов (растворимых карбонатов кальция и магния), водоросли выделили за счет кислорода воды огромные количества свободного кислорода. Этим они существенно изменили свойства среды жизни на Земле, сделав ее пригодной для появления и развития аэробов в широком смысле, т. е. для новых групп микроорганизмов и для животных. Восстановление аммиака и углеводородных соединений деятельностью многих групп бактерий при одновременном накоплении в биосфере больших масс органического вещества привело к концу протерозоя (синия) к накоплению на Земле свободного азота.


Конечно, свободный азот мог накапливаться в атмосфере не только в результате жизнедеятельности денитрифицирующих бактерий, но и при разложении органического вещества белкового состава в бескислородной среде биосферы того времени. В круговороте веществ в природе такой путь также мог играть важную роль.

Совместная деятельность всех отмеченных групп организмов, обитавших лишь в водных средах Земли, таким образом, в корне изменила состав атмосферы и гидросферы, значительно приблизив его в конце протерозойской эры (570 млн. лет назад) к современному.


Остатки животных в отложениях протерозоя очень редки, но нет сомнения в том, что основы животного мира были заложены одновременно с возникновением мира бактерий и фотосинтезирующих растений. Животные представлены в протерозое мелкими формами, не получившими массового развития и не принимавшими участия в породообразовании. Они пока теряются среди обильно проявившейся водорослевой и бактериальной жизни. Однако все же находки остатков организмов в метаморфических толщах докембрия известны уже в ряде стран мира, в особенности они участились в пределах некоторых горных районов Дальнего Востока, Сибири и на севере европейской части СССР. К таким районам можно причислить и Украину, в частности докембрий Украинского кристаллического массива. В 1958 г. В. В. Бесе в породах криворожской серии наблюдал некоторые "проблематические" остатки организмов, оставшиеся ближе не изученными.


В 1965 г. при микроскопическом изучении конгломератов верхней свиты криворожской серии из района рудника им. М. В. Фрунзе были обнаружены уже хорошо сохранившиеся остатки организмов. В геологическом строении района этого рудника участвуют породы метабазитовой и криворожской серий глубокого докембрия, образующие синклинальную структуру субмеридионального простирания. Верхняя из этих серий сложена различными сланцами, мраморами, песчаниками и конгломератами. Характерной особенностью некоторых сланцев, реже песчаников и мраморизованных известняков, является местами содержание углеродистого материала с переходами даже в углистые сланцы. Конгломераты состоят из окатанных обломков кварцитов, песчаников, гранитов и очень редко из известняков, по-видимому, принадлежащих к более древней серии отложений докембрия. В штуфе керна с глубины в 1344-1345 м, представленном именно конгломератом, была обнаружена галька такого состава с одиночной галькой карбонатной породы с явными остатками организмов. Цемент песчанистый перекристаллизованный, показывающий зеленосланцевую фацию метаморфизма на переходе к амфиболитовой. Абсолютный возраст конгломерата, точнее время его метаморфизма, по данным Ф. И. Котловской (1961), А. П. Виноградова, Л. В. Комлева и А. И. Тугаринова (1965), указывается около 2000 млн. лет.



С помощью прозрачного шлифа в гальке мраморизованного известняка установлены несомненные остатки синезеленых водорослей, в сопровождении нескольких экземпляров остатков кораллообразных представителей беспозвоночных животных, что, конечно, не только для докембрия Украины, но и вообще является большой сенсацией. Остатки водорослей представлены в виде местных скоплений одноклеточных форм, а также водорослевым трихомом, свернутым в спираль, со следами его окружавшей студенисто-слизистой массы (?). Подобный тип сохранности ранее многократно наблюдался. Остатки кораллообразных организмов вскрыты в косых и продольных сечениях, причем их внутренняя полость заполнена или остатками одноклеточных водорослей, или густой массой метаморфизованного органического вещества (битумами?). Кораллиты Aseptalia были узкоконической или роговидной формы с двуслойной стенкой и без каких-либо перегородок.

Не менее древние остатки фауны червей, трубкожилов - Udocania problematica обнаружены А. М. Лейтесом в отложениях битунской свиты удоканской серии Забайкалья, возраст которых определен в 2000-1600 млн. лет. На этом же стратиграфическом уровне в туломозерской свите сегозерской серии ятулия Карелии В. А. Перевозчиковой обнаружены створки раковины.

В отложениях гонамской свиты в бассейне р. Учур (Дальний Восток) автором установлены остатки спикуд губок и двух типов проблематик. Фрагменты спикул губок представлены одноосными спикулами - рабды и спикулами крючковидной формы. В этой же свите в Аяно-Майском районе установлены колониальные водоросли Gonamophyton , широко распространенные в мурандавской свите хребта Малый Хинган Приамурья и щекурьинской свиты восточного склона Приполярного Урала, где были распространены также колониальные водоросли Murandavia .

Обильный материал по древнейшей органике получен из слоев нижнего и среднего протерозоя Южной и Центральной Карелии. Он представлен здесь как исключительно мелкими, так и относительно крупными формами, в числе которых главнейшая роль принадлежит синезеленым водорослям, обитавшим в составе планктона и бентоса. Они представлены как одноклеточными, так и, чаще, колониальными формами, частью в виде сложных биоценозов. Представители бентоса часто развивались последовательно друг на друге в общем процессе, приводившем к образованию соответствующего осадка, охватываемого литогенезом. Отчетливо выражены микрослои, вероятно, обусловленные сезонными изменениями условий жизни фотосинтезирующих организмов. Субстрат иногда был подвижным (песчаники?), причем формировались так называемые онколиты. В составе вещества их наслоений удается различать остатки отдельных видов синезеленых водорослей. Возможен подсчет числа сезонов вегетации при формировании таких образований. Иногда формировались онколиты удлиненной формы, направленного развития. Наблюдались случаи их прижизненного срастания, что могло произойти при делении клеточных колоний. Их вещество первично имело студенисто-слизистую консистенцию, как это и свойственно синезеленым водорослям.


Остатки организмов: губкообразные организмы в разных сечениях в шлифах (ув. в 4 раза) Ladogaella variabilis Vologdin (а) . Часть сечения онколита, образованного нитями водоросли (ув. в 20 раз) Ptilophyton makarovae Vоlоgdin (б) . Карелия, район г. Сортавала, свита контиосари (1770-1850 млн. лет, но А. Г. Вологдину)

В слоях из свиты контиосари Карелии (нижний протерозой) обнаружено сосуществование водорослей Ptilophyton с губко-подобными организмами рода Ladogaella . У этих организмов были отчетливо выражены внутренняя полость и общая радиальная симметрия. В своем индивидуальном развитии они проходили начальную планктонную стадию и взрослую - прикрепленную с образованием каблучка прирастания к субстрату.

Иногда губкообразные организмы прикреплялись к колониям водорослей, ограничивая их жизнедеятельность. Случалось, что стадия свободного плавания задерживалась, причем соседние организмы иногда срастались. У сидячих особей верхняя часть оформлялась в виде воронкообразного углубления, чем они как бы предрешали внешнюю форму поздних кораллов и других кораллообразных организмов. В поле прозрачного шлифа под микроскопом удается наблюдать сложные картины таких древнейших жизнепроявлений. Морской бассейн охватывал тогда, по-видимому, всю Фенноскандию, поскольку автору удалось в той же свите сделать вторую в мире находку Corycium enigmaticum Sederholm . При изучении данной формы оказалось, что ей свойственна трубчато-коническая форма тела с радиальной симметрией. Оболочка (стенка) утолщенная, подчеркнутая остаточным органическим веществом. При этом были обнаружены внутренние перегородки на разных стадиях индивидуального развития, обычно пористые, плоские. Этот новый признак,

возможно, указывает ча принадлежность формы к более высокоорганизованной группе животных. Не исключено, что развитие шло в сторону цефалопод (?). У совместно находимых губкообразных (ладогелл) на взрослой стадии проявлялась способность к почкообразованию, очевидно, прогрессивная по отношению к простому делению. Как корициумы, так и ладогеллы, по-видимому, имели студенисто-слизистую консистенцию тел, что способствовало длительному свободному развитию особей. Последующая фоссилизация, вероятно, была проявлением старения особей, что приводило к их отмиранию и погружению в илистый осадок бассейна.

Обнаружено много остатков организмов с радиально-осевой симметрией тела и внутренней полостью или с системой полостей и каналов. Поражает, что они совсем не деформированы в породе; это можно объяснить своеобразием проявлений фоссилизации. Вероятно, эти организмы были близкими к гидроидным полипам, к гидромедузам.

Очень интересна сплошная черная окраска пород (кристаллических сланцев) свиты контиосари. Она оказалась обусловленной скоплением черной (вторичной) слюды - биотита и сильно измененных битумов, частью вполне поддающихся экстракции сильными растворителями. Поиски особо мелких остатков с помощью шлифов и порошковых проб привели к открытию множества своеобразных мелких скелетных образований, частью целых, частью ломаных, среди которых присутствуют фоссилизированные остатки водорослей типа золотистых (?), перидинеевых (?), диатомовых по построению очень еще примитивных, чаще сложенных кремнеземом, что может быть следствием как первичных явлений, так и вторичных. Данное местонахождение в возрастном отношении близко к установленному в слоях свиты ганфлинт на берегах оз. Онтарио, но в отношении богатства органическими остатками оно значительно интереснее.

В Восточной Сибири - в Забайкалье, в Удоканском хребте представлены отложения протерозоя большой мощности. Здесь в слоях бутунской свиты тоже обнаружено много органических остатков, в основном водорослевых. Местами породы свиты, явно имеющей морское происхождение, целиком состоят из подвергшихся фоссилизации органических остатков, местами встречается бесструктурное остаточное органическое вещество. Водоросли по типу принадлежат к красным. Следы слизеобразования у их остатков выражены незначительно. Некоторые формы с нитчатым талломом образуют сплетения, свивающиеся в две пряди, подобно шпагату, что можно различить в сечениях породы соответствующего направления. При хорошей сохранности у однорядных нитей можно отчетливо различить последовательность наращивания клеток или клеточных колоний. Некоторые участки породы сложены однородно ориентированными тесно сомкнутыми фоссилизированными нитями с ясной полярностью развития водорослевой дерновинки. Фоссилизация превосходно закрепила морфологические черты ряда видов таких водорослей. Открыты виды, вполне сопоставимые с изученными автором из свиты цзинлин китайского синия. Удалось также обнаружить остатки своеобразных двухстенных скелетных образований, имеющих пластинчатое строение и пористость, благодаря чему они несколько напоминают археоциаты кембрия. Примерный возраст вмещающих пород - средний протерозой.

В Юго-Западном Прибайкалье слои улунтуйской свиты верхнего протерозоя оказались преимущественно фитогенными, но органические остатки в них сохранились по большей части плохо. Все же по р. Сарме удалось обнаружить разновидность улунтуйского водорослевого известняка, почти целиком состоящего из фоссилизированных остатков водорослей с округлыми и нитевидными клеточными колониями. В результате был описан ряд видов и рядов микроскопических водорослей, очень четких. В их составе присутствуют одноклеточные с округлыми клетками двух размеров, отнесенные к двум видам одного рода, и интересная нитчатая форма. Сходная форма затем была открыта в мурандавской свите протерозоя Приамурья.

Из учурской серии верхнего протерозоя на юго-востоке Сибирской платформы в районе пос. Нелькан Аяно-Майского района был описан ряд интересных родов и видов водорослей группы хроококковых и ревуляриевых. Первые (гонамофитоны) были представлены в породе отдельными клеточными колониями, окруженными прижизненно толстой оболочкой студенисто-слизистой массы. В шлифах это видно отчетливо. В последней видны радиальные каналы, по которым клетки могли выбрасываться наружу, подобно тому, как это имеет место у современного рода воронихиния (Voronichinia Elenkin) . Интересно, что очень сходную водоросль удалось обнаружить в докембрийской породе в забое одной нефтяной скважины в Тюменской области, что позволяет коррелировать вмещающие слои. Водоросли группы ревуляриевых - нельканеллы с колониями радиально-лучистого строения развивались от центра колонии или же, как казалось, только в зоне периферии с образованием дерновинки сферического очертания в пространстве. Важно отметить, что микроводоросли с радиально-лучистым расхождением нитей и свободной полостью внутри найдены также в протерозое восточного склона Кузнецкого Алатау. Накопленный опыт позволяет относить такие формы предположительно к зеленым водорослям тиго обнаруженных автором на Тимане.

Докембрийские отложения Батеневского кряжа в Кузнецком Алатау также оказались изобилующими остатками водорослей из мартюхинской свиты. Автором были выявлены и описаны колониальные водоросли из порядка Chroococales Geillеr роды Vesiculophyton и Echaninia . Остатки своеобразной водоросли Pustularia были встречены в верхнепротерозойских отложениях (джурская свита) низовьев р. Амбары восточного склона Енисейского кряжа, среди строматолитового материала. Ее остатки представлены известковыми лентовидными образованиями весьма своеобразного строения, характеризующимися отчетливо выраженными пузырчатыми микроструктурами.

Колония водоросли из микроскопических прямостоячих нитей обладала способностью последовательного линейного разрастания с образованием лентовидных пластин впоследствии обызвествлявшихся. Причем скопления пузырьков воздуха, находящихся в слизи колонии, мешавшие ее сплошному обызвествлению, обусловливали наличие в дальнейшем ее пузырчатой структуры. Обызвествленные колонии водоросли залегают в породе одна над другой через промежуток 0,3 до 2,0 мм.

На западном склоне Тиманского кряжа, по р. Мезенская Пижма, в слоях протерозойской серии, выраженной алевролитовыми породами, выявлен крупный биогерм, образованный при участии зеленых водорослей большого размера. В результате этого открытия автором была описана форма рода тиманелла, имеющая таллом в поперечнике до 10-12 см, при отчетливо выраженной гигантской осевой части и постепенно утолщающихся массовых нитевидных ответвлениях в стороны и вверх. Водоросль имеет черты, сближающие ее с типичными палеозойскими сифоновыми, но по размерам таллома она в десятки раз крупнее. Упомянутый биогерм развивался на грунте илистого состава. Особи водоросли нарастали друг на друга, образуя сплошную массу, отмершее вещество которой пропитывалось илистым материалом. Первичная консистенция этого вещества была несомненно студенисто-слизистой. Материал можно различать только на увлажненных пришлифовках и в прозрачных шлифах благодаря сохранившемуся остаточному органическому веществу.

Выше уже упоминались строматолиты - своеобразные известковые сгустки слоистого строения, встречающиеся в древних толщах от архея до современных отложений. Некоторые исследователи изучают такой материал на основе лишь внешних признаков, учитывая их форму и размеры, не раскрывая его микроскопического строения, неправильно придавая им тройную латинизированную номенклатуру, как будто это нормальный палеонтологический материал. Между тем внутри таких образований, по существу являющихся микробиогермами, нередко присутствуют остатки конкретных форм микроскопических водорослей. Они вполне различимы для опытного глаза и обычно заслуживают специального палеонтологического изучения. Так, в строматолитах протерозоя Приамурья (хребет Малый Хинган, левый берег р. Амура) в слоях мурандавской свиты автору удалось обнаружить в веществе крупных, изменчивой формы строматолитов множество четких видов и родов синезеленых. водорослей, среди которых видное место занимают развивавшиеся округлыми колониями мурандавии. Чтобы различить их и понять, необходимо было только при изучении препаратов перейти от малых увеличений к большим, до нескольких сотен раз. Их остатки отчетливо видны в препаратах, нередко напоминая картину живой колонии водоросли на предметном стекле. Видны также фоссилизированные следы наружной студенисто-слизистой оболочки колоний с особенностями их микростроения. Выделенные из препаратов таксоны различаются то размерами клеточных колоний, то толщиной и внутренними деталями строения их оболочек, размерами клеток и т. д. Благодаря этому значительно обогатился список руководящих форм для мурандавской свиты, позволивший определить и ее возраст как низы верхнего протерозоя, что заставило признать докембрийским и возраст железорудной свиты Малого Хингана. Как оказалось, выделенные мурандавии распространялись отсюда на запад, достигая Карелии, а весьма возможно и дальше. Наряду с округлыми колониями здесь же были открыты нитчатые формы водорослей и колонии с особо крупными клетками. Одна из нитчатых форм особо примечательна. Ее можно рассматривать как развитие двух-трех спирально свернутых однорядных нитей в сгустке студенисто-слизистого вещества. Она имеет сходство с Thisanaplanta filamentosa V.et J., выделенной автором и Т. Н. Титоренко в слоях улунтуйской свиты протерозоя Юго-Западного Прибайкалья.

Водоросль нитчатого строения со спирально свернутой нитью была обнаружена автором во внутриформационном конгломерате в низах криворожской серии на Украине. К сожалению, метаморфизм сильно изменил ее остатки. Нить водоросли тоже, по-видимому, находилась внутри слизевого чехла. Сравнивать эти водоросли преждевременно; обе они относятся, вероятно, к одной группе, к одному семейству (?). Вместе с этой "спирогироподобной" водорослью в гальке того же конгломерата были открыты интереснейшие остатки организмов Aseptalia , тяготеющих к явным целентератам, о которых говорилось выше.


Pustularia taeniata Vologdin. Уменьш. в 10 раз. Реконструкция

Много нового, интересного материала по организмам докембрия дал автору Чешский массив (Западная Чехословакия). В районе к югу от г. Пльзень, близ г. Вотице, в слоях докембрия, серия молданубика, была обнаружена большая группа ископаемых форм, в числе которых оказалось много водорослей с колониями сферической формы. У них варьируют размеры, очертание в пространстве и проявления следов клеточной структуры. Они существенно отличаются от подобных сибирских микроводорослей докембрия. Наряду с этим обнаружены фоссилизированные дерновинки, которые тоже состоят из округлых, но разновеликих клеточных колоний, имеющих форму неправильных тяжей - нитей. Обычно им сопутствуют там крупные местные скопления обуглероженного битума, иногда размером с голову ребенка. Эта группа водорослей, кажущаяся эндемичной, дала возможность автору выделить и описать в специальной монографии ряд довольно четких видов и родов, которые характерны именно для слоев пестрой свиты молданубика Южной Чехии. Интересно, что в ассоциации с этими водорослями были обнаружены остатки беспозвоночных животных, которые очень напоминают скелеты археоциат, но отличаются от типичных кембрийских представителей этой группы исключительно малыми размерами. Возможно, что это предковые формы, требующие дальнейшего исследования.


Timanella gigas Vologdin. Внешний вид водоросли. Уменьш. в 2 раза. Реконструкция

В составе докембрия Чешского массива, в его спилитовой серии, автором также были открыты четкие нитчатые водоросли в ассоциации с одноклеточными планктонными формами. Если они удачно вскрыты при распиловке образца, именно продольно, то в препаратах местами кажутся образующими целые заросли, в частности водоросль Bystraia boucekl . Там же, в районе бассейна р. Бероунки, в лидитах альгонкия выявлена нитчатая водоросль Berounkia , несколько сходная с соответствующей находкой в докембрии района оз. Онтарио.

В чешском материале обнаружены следы сгустков бесструктурного органического вещества, иногда хорошо зафиксированных процессами окаменения, притом наблюдаемых среди массового развития одноклеточных водорослей. По-видимому, это тоже остатки водоросли, способной образовывать округлые клеточные колонии с обильным слизеотделением (?). Там же были обнаружены остатки конических или трубчатой формы тел с довольно толстой стенкой. К водорослевым остаткам их причислить трудно.


Timanella gigas Vologdin: а - внутреннее строение слоевища; б - боковые ответвления. Нат. вел. Реконструкция

В докембрии Чешского массива при неясном стратиграфическом положении были найдены остатки почти настоящих археоциат с двухстенными скелетами, у которых стенки соединены между собой пористыми радиальными перегородками. Таким образом, накапливается достаточно данных, чтобы считать археоциаты характерными и для протерозоя. В слоях пестрой свиты района г. Вотице автором выявлено несколько групп беспозвоночных животных, имевших пористо-пластинчатый известковый скелет. Некоторые организмы отличались двухкамерным скелетом. У других он был многокамерным, по своему строению напоминающим дольки апельсина. Возможно, это тоже археоциатоподобные или приближающиеся к простейшим, к фораминиферам, организмы. Вопрос этот пока остается открытым. В слоях чешского моравика в районе г. Грудима были выявлены остатки многокамерных организмов со следами пузырчатой ткани во внутренней полости. Еще важнее, что там же были обнаружены сечения маленьких раковинок, лишенных замка, скорее всего принадлежавших лингулоподобным брахиоподам. Раковины лежали на грунте вогнутой стороной вверх и на них видны фоссилизированные скопления одноклеточных планктонных водорослей.

Большую группу горных пород составляют породы, образованные за счет остатков органического вещества и самих растительных организмов, такие, как горючие сланцы (кукерситы Эстонии), каменные и бурые угли, вся группа ископаемых битумов (нефть и горючий газ, асфальт и озокерит). Породы, сложенные растительными остатками - водорослями, имеются и в протерозое.

В составе пород докембрия Карелии издавна известны шунгиты, своеобразные горные породы осадочного происхождения, встречающиеся в ряде районов Заонежья, в частности в районах Кондопоги, Великой Губы, пос. Шунги. Шунгиты образуют особую свиту в верхах ятулия (среднего протерозоя). Имеются шунгитовые сланцы - пластообразные шунгиты, залегающие жилообразно вблизи от покровных диабазов. Внешне шунгиты напоминают каменные угли и антрацит. В особых условиях им свойственна способность к сгоранию, чаще при большой зольности, объясняемой высоким содержанием углерода. Эти шунгиты содержат до 98% углерода. Их плотные кремнистые разновидности используются как поделочный материал или как пробирный камень. В порошке шунгиты пригодны для получения черной краски. Почвы на шунгитах отличаются повышенной урожайностью сельскохозяйственных культур вследствие наличия в них большого комплекса фитофильных микроэлементов: молибдена, меди, ванадия, мышьяка, калия, магния и т. д.

Некоторые разновидности шунгитов при температуре до 1090-1105° С вспучиваются, превращаясь в легкую пористую массу, пригодную для использования ее в качестве теплоизоляционного материала - шунгизита. Вспученная масса шунгита - пенокералит - хорошо пилится, имеет прочность на сжатие до 40 кг / см 2 , что делает его тоже ценным строительным материалом.

Происхождение шунгитов многие десятилетия представлялось загадкой. Более близко к объяснению природы шунгитов подошел Б. А. Борисов, считавший, что они созданы за счет метаморфизма пород сапропелевого типа, образованных в стоячих морских мелководных бассейнах - бухтах и лиманах, где интенсивно развивалась жизнь того времени. В 1968 г. в шунгитовых породах из Приладожья В. И. Горлов действительно обнаружил остатки организмов, представленных микроскопическими формами. При исследовании этой находки, а также изучении других материалов из шунгитовой свиты Прионежья было установлено в шлифах массовое скопление остатков микроскопических водорослей типа синезеленых. По-видимому, их периодическое развитие в прошлом обусловливало "цветение" воды в периоды годичных сезонов вегетации. Это оказались планктонные водоросли, по своим биологическим свойствам действительно сходные с водорослями, образующими сапропелевые осадки в современных стоячих пресноводных и солоноватоводных водоемах.

Описанная значительная группа родов и видов микроскопических водорослей, по их остаткам из карельских шунгитовых пород характеризует особенности жизнепроявлений в водных бассейнах глубокого геологического прошлого в пределах Северо-запада СССР и, вероятно, Финляндии. Кроме того, можно считать, что одновременно разгадывается происхождение шунгитоподобных образований из ряда других районов СССР, в частности Восточной Сибири, Дальнего Востока и Украины.

Интересно, что процессом окаменения осадков в древнейших бассейнах указанного выше типа закреплены, зафиксированы вполне ясно стадии индивидуального развития отдельных клеток водорослей, этапы их размножения посредством простого деления, что указывает на их особую примитивность, как это и можно было ожидать у таких древних форм жизни. Кроме того, в средних и более поздних слоях протерозоя, в основном в синий, известны замечательные находки остатков радиолярий, фораминифер и кремневых губок в углистых сланцах докембрия Бретани. Чарльз Д. Уолкотт открыл в докембрии Большого Каньона Северной Америки остатки многощетинковых червей и ряд других организмов. На юге Австралии обнаружены в докембрии остатки радиолярий. В слоях докембрия Швеции открыт отпечаток членистоногого животного - "ксенусиона", которого можно признать представителем ветви животных, из которой в кембрии развился класс трилобитов. Своеобразные остатки животных неясного систематического положения, отнесенного к проблематическому роду "чарний", были открыты в докембрии Англии и Австралии.

Чрезвычайно разнообразна в систематическом составе фауна Эдиакарского месторождения на юге Австралии близ г. Аделаиды. Здесь в кварцитовых песчаниках Паунд возраста около 600 млн. лет установлены остатки бесскелетной фауны, представленной медузоидными формами, остатками червей, организмов неизвестного систематического положения. Подобные же организмы обнаружены в одновозрастных отложениях свиты Кибис системы Нама в Южной Африке. Здесь встречены Rongea Gurich, Pteridinium Gurich, Para medusium . В серии Нама в Африке обнаружены криброциатоподобные организмы из рода Cloudina. В Евразии и в Америке установлено несколько отпечатков медуз и червей, напоминающих по форме и размерам пиявок.


Вид организма Suvorovella aldanica Vologdin et A. Maslov на выветрелой поверхности породы в нижней части юдомской свиты (ув. в 2 раза). Якутия, район пос. Усть-Юдома, р. Мая (по А. Г. Вологдину)

В докембрии СССР и Китая мы находим иглы кремневых губок, самые примитивные по устройству, отпечатки червей типа сабеллитов, получивших позднее в кембрии более значительное развитие, остатки фораминифер, древнейших археоциат, хиолитов и организмов неясного систематического положения.

В прослоях доломитизированного известняка нижней части разреза юдомской свиты по левому берегу р. Май Н. П. Суворова обнаружила своеобразные органические остатки Suvorovella и Majella , неизвестного систематического происхождения, организмы с двустепенным известковым пластинчатым непористым скелетом, с интервалом без скелетных элементов и стенкой из ромбических выступов, расположенных рядами по спирали.

В верхнем докембрии Русской платформы обнаружены остатки медузоидных организмов Beltanelloides морщинистых сфероидальных форм, напоминающих Charniodiscus , на п-ове Рыбачьем встречены медузоидные формы, напоминающие Medusina и Ediacaria , в керне скважины у г. Яренска из ляминаритовых глин установлена Vendia , в ляминоритовых глинах наблюдаются пиритизированные следы червеобразных организмов Vendovernites . В валдайских отложениях Прибалтики встречены формы, подобные Beltanella , и отпечатки оболочек типа Sabellidites .


Отпечатки протомедуз Sajanella arshanica Vоlogdin на поверхности глинистого песчаника в низах карагасской свиты (нат. вел.). Восточный Саян, Иркутская обл., район пос. Аршан

Небезынтересно отметить находки в слоях карагасской свиты Восточного Саяна отпечатки медуз Sajanella . Они были отнесены к отряду брукселлид, выделенному по материалам нижнего палеозоя. Почти в тех же слоях обнаружены остатки червей сабеллидитов, а также крупных ракообразных, несколько напоминающих палеозойских эвриптерид. Они были описаны автором как карагассии и отнесены к хелицеровым из-за их клиновидных тельсонов и других особенностей панциря. Карагассии достигали в длину полметра и более. Пока что это самые крупные организмы из беспозвоночных позднего докембрия. Впрочем, некоторые исследователи склонны считать их "скрюченными корками высыхания глинистых прослойков на поверхности песка". Карагассии являются, по-видимому, вымершей группой членистоногих, живших в некоторых пресноводных бассейнах конца докембрийского времени.

Таким образом, в мощнейших толщах осадочно-метаморфического докембрия северной Евразии выявлен принципиально новый обильный палеонтологический материал, охватывающий огромный стратиграфический диапазон - от верхов архея до начала кембрия. Он характеризует многие горизонты пород и этапы геологического времени и начинает укладываться в основу новой единой, по крайней мере для Евразии, схемы стратиграфического расчленения докембрия.

Границу между докембрием и кембрием пытались установить многие исследователи. В настоящее время этот вопрос в корне проясняется, поскольку оказывается, что переход от протерозоя к палеозою (570 млн. лет) был отчетливо выражен соответствующей сменой представителей растительной и животной жизни в общем ходе ее эволюции. Преобладание синезеленых водорослей сменилось преобладанием водорослей красных. Сам протерозой и даже поздний архей оказались не только потенциальными, но и фактическими вместителями остатков организмов за огромный этап геологического времени, а именно более чем на два миллиарда лет древнее той границы, ниже которой палеонтологи в сущности не заглядывали. Можно отчетливо отделить начало кембрия от верхов докембрия по остаткам специфических форм водорослей, археоциат, трилобитов и других групп организмов, поскольку история формирования пород земной коры отчетливо записывалась в них, одновременно с общим ходом истории жизни. Поэтому вырисовывается, притом во многом по-новому, общий ход развития организмов Земли в палеофациях ее биосферы, почти с момента возникновения жизни - около 3500 млн. лет до н. э. В результате этого имеется возможность широко внедрить в практику стратиграфических и геологосъемочных работ, связанных с древнейшими осадочными толщами, палеонтологический метод и выделить с его помощью руководящие формы ископаемых организмов как меру геологического времени одновременно с прослеживанием развития самой жизни на ранних этапах.

В общих чертах выясняется древность известных науке организмов, устанавливаются новые, не известные ранее, группы и конкретные предковые формы всех типов бактерий (?), растений и животных, сформировавшихся в процессе общего изменения жизненной среды в биосфере Земли, в процессе биохимической эволюции живого вещества, сопровождавшейся неразрывно эволюцией морфологической. Следует отметить, что органическое вещество в виде продукции организмов и их конкретных остатков во вмещающих породах почти никогда полностью не исчезает. Будучи в той или иной степени измененным - редуцированным, обуглероженным, фоссилизированным, оно часто способно сохранять во вмещающей горной породе исходные морфологические черты, достаточные для палеонтологического изучения. В то же время это вещество представляет немалый интерес и для специальных биохимических исследований, поскольку местами в породах докембрия уже установлено присутствие многих химических компонентов из состава живого вещества. Важно лишь, чтобы палеонтолог и биохимик работали совместно. Геолог при этом получит новый опорный материал для своих стратиграфических, палеогеографических, фациальных и иных построений, а также данные о палеоклимате, ископаемых фациальных обстановках породо- и рудообразования в осадочных условиях, именно от живых свидетелей геологического прошлого. Биогеохимик и биохимик могут получить важный документальный материал и данные о биохимической эволюции жизни на нашей планете.

Таким образом, протерозойская эра истории нашей планеты была в основном временем исключительного господства бактерий и водорослей в водных средах. За этот этап времени, длившийся, по данным абсолютной геохронологии, около 1200 млн. лет, упомянутые группы организмов выполнили огромную геологическую работу по образованию ряда типов осадочных пород и руд, а также по переработке вещественного состава самой биосферы и атмосферы Земли.

Развитие жизни в архейскую эру.

Архей – самая древняя эра, началась более 3,5 млрд. лет назад и продолжался около 1 млрд. лет. Жизнь зародилась в архейскую эру. Поскольку первые живые организмы еще не имели никаких скелетных образований, от них почти не осталось следов. Однако наличие среди архейских отложений пород органического происхождения - известняков, мрамора, графита и других - указывает на существование в эту эру примитивных живых организмов. Ими были одноклеточные доядерные организмы (прокариоты): бактерии и сине-зеленые водоросли.

В архейскую эру произошли крупные ароморфозы: возникновение клеток с клеточным ядром, полового процесса, фотосинтеза и многоклеточности.

Половой процесс – расширяет возможности естественного отбора, повышает возможность приспособления к условиям среды вследствие создания бесчисленных комбинаций в хромосомах. Новый способ размножения как полезный в сохранении видов был закреплен естественным отбором, и теперь он преобладает в животном и растительном мире.

Возникновение фотосинтеза положило начало разделению единого ствола жизни на два – растения и животные – по способу питания и типу обмена веществ. Насыщение воды кислородом, накопление его в атмосфере и наличие пищи создавали предпосылки для развития животных в воде, защищавшей живые организмы от губительного ультрафиолетового излучения. Со временем в атмосфере стал образовываться озон, поглощающий почти все ультрафиолетовое излучение – защита жизни на поверхности воды и суши. Жизнь в воде была возможна благодаря тому, что вода защищала организмы от губительного действия ультрафиолетовых лучей. Именно поэтому море смогло стать колыбелью жизни.

Возникновение многоклеточного строения повлекло усложнение в организации живых существ: дифференциацию тканей, органов и систем, их функций.

Пути эволюционных преобразований первых многоклеточных были различны.

Некоторые перешли к сидячему образу жизни и превратились в организмы типа губок. Другие стали ползать по субстрату с помощью ресничек - плоские черви. Третьи сохранили плавающий образ жизни. Приобрели рот и дали начало кишечнополостным.

Со временем в первородном океане стали иссякать органические вещества, накопившиеся в нем абиогенным путем. Появление аутотрофных организмов, в первую очередь зеленых растений, обеспечило дальнейший непрерывный синтез органических веществ, благодаря использованию солнечной энергии а, следовательно, существование и дальнейшее развитие жизни.

Развитие жизни в протерозойскую эру.

Протерозойская эра – самая длинная в истории Земли. Она продолжалась около 2 млрд. лет. На границе архейской и протерозойской эры произошел первый великий период горообразования. Он привел к значительному перераспределению площадей суши и моря на Земле. Эти изменения лика Земли вынесли не все виды организмов, многие из них вымерли. Было уничтожено и большинство ископаемых останков, благодаря чему так мало известно о жизни в архейскую эру.

В течение этой эры бактерии и водоросли достигают исключительного расцвета. Чрезвычайно интенсивный процесс отложения осадков шел с участием организмов. Известно, что осадочное железо – продукт жизнедеятельности железобактерий. К протерозою относится образование крупнейших залежей железных руд на Земле (курские, криворожские руды, железняки Верхнего озера в США и др.). Господство сине-зеленых сменяется обилием зеленых водорослей, в т.ч. многоклеточных прикрепленных к дну. Это потребовало расчленения тела на части. Важнейшим ароморфозом было возникновение двухсторонней симметрии, которая привела к дифференцировке тела на передний и задний конец, а также на брюшную и спинную стороны. Передний конец является местом, где развиваются органы чувств, нервные узлы, а в дальнейшем и головной мозᴦ. Спинная сторона выполняет защитную функцию, в связи, с чем здесь развиваются различные кожные железы, механические образования (щетинки, волоски), покровительственная окраска. Большинство животных протерозоя было представлено многоклеточными. В морях жили не только низшие многоклеточные – губки и радиально симметричные кишечнополостные; появляются и двухсторонне симметричные. Среди последних известны кольчатые черви – от них произошли моллюски и членистоногие. К концу протерозоя в морях появляются древнейшие представители членистоногих – ракоскорпионы.

Также от древнейших животных с двусторонней симметрией произошли иглокожие и хордовые, имеющие между собой ряд сходных признаков, выражающихся в характере» развития, характере образования скелета, строении кожи и отличающихся по этим признакам от других типов животных. В протерозое появились и древнейшие хордовые - бесчерепные. Их представитель в современной фауне - ланцетник.

На суше во влажных местах могли обитать бактерии, сине-зеленые водоросли, животные типа простейших. Они были первыми почвообразователями.

На смену одноклеточным и колониальным формам пришли многоклеточные. Жизнь стала геологическим фактором. Живые организмы меняли форму и состав земной коры, формировали ее верхний слой - биосферу. В результате фотосинтеза изменился состав атмосферы. Накопление кислорода в атмосфере способствовало развитию высших гетеротрофных организмов- животных.

Так же накопление кислорода в атмосфере привело к формированию озонового экрана в атмосфере. Суша безжизненна, но по берегам водоемов начались почвообразовательные процессы в результате деятельности бактерий и микроскопических водорослей.