Виды излучений кратко. Что такое излучение в физике? Виды излучений, источники, влияние на человека. Излучение инфракрасного спектра

Каждый человек ежедневно сталкивается с различными видами излучения. Для тех, кто мало знаком с физическими явлениями, плохо представляет, что означает данный процесс и откуда он происходит.

Излучение в физике – это формирование нового электромагнитного поля, образующегося при реакции частиц, заряженных электрическим током, другими словами, это определенный поток электромагнитных волн, которые распространяются вокруг.

Свойства процесса излучения

Данную теорию заложил еще Фарадей М. в XIX веке, а продолжил и развил Максвелл Д. Именно он смог придать всем исследованиям строгую математическую формулу.

Максвелл смог вывести и структурировать законы Фарадея, из них он определил, что все электромагнитные волны перемещаются с одинаковой скоростью света. Благодаря его труду некоторые явления и действия в природе стали объяснимы. Вследствие его выводов стало возможным появление электро, радио техники.

Заряженные частицы определяют характерные особенности излучения. Также на процесс оказывает сильное влияние взаимодействие заряженных частиц с магнитными полями, к которым она стремится.

К примеру, при ее взаимодействии с атомными веществами меняется скорость движения частицы, она сначала замедляется, а далее перестает двигаться дальше, в науке данное явление называется тормозное излучение.

Можно встретить разные виды данного явления, одни созданы самой природой, а другие с помощью вмешательства человека.

Однако, сам закон изменения типа излечения один для всех. Электромагнитное поле отделено от заряженного элемента, но при этом движется с одинаковой быстротой.

Характеристика поля напрямую зависит от того, с какой скоростью происходит само движение, а также какой размер имеет заряженная частица. Если при движении она не сталкивается ни с чем, то ее скорость не изменяется и, следовательно, она не создает излучения.

А вот, если при движении она сталкивается с разными частицами, то скорость видоизменяется, часть собственного поля отсоединяется, и превращается в свободное. Получается, что формирование магнитных волн происходит только при изменении скорости частицы.

Различные факторы могут повлиять на скорость, отсюда и формируются разные типы излучения, к примеру, это может быть тормозное. Также существуют дипольное, мультипольное излучения, они образуются, когда частица внутри себя меняет, имеющуюся структуру.

Важно, что поле всегда имеет импульс, энергию.

Так как при взаимодействии позитрона и электрона возможно образование свободных полей, при этом заряженные частицы сохраняют импульс, энергию, что передается электромагнитному полю.

Источники и виды излучения


Электромагнитные волны изначально существовали в природе, в процессе развития и создания новых законов физики появились новые источники излучения, которые называются искусственными, созданные человеком. К такому виду можно отнести рентгеновские лучи.

Для того, чтобы ощутить на себе данный процесс не нужно выходить из квартиры. Электромагнитные волны окружают человека повсюду, достаточно включить свет или зажечь свечу. Поднеся руку к источнику света можно ощутить тепло, которое излучают предметы. Такое явление называется .

Однако, существуют и другие его виды, к примеру, в летние месяцы, отправляясь на пляж, человек получает ультрафиолетовое излучение, которое исходит от солнечных лучей.

Каждый год на диспансеризации проходят такую процедуру как флюорография, для того, что бы выполнить медицинское исследование используется специальное рентгеновское оборудование, которое тоже дает излучение.

В медицине также используется , чаще всего применяют при физиотерапии больных. Также такой вид используется в детских лазерах. Также при лечении некоторых заболеваний применяется лучевая терапия. Такой тип называется гаммой, так как длина волн весьма коротка.

Такое явление возможно благодаря полному совпадению заряженных частиц, которые взаимодействуют с источником света.

Многие слышали о радиации, это тоже один из видов излучения.

Она образуется при распаде химических элементов, которые являются радиоактивными, то есть процесс происходит из-за того, что расщепляется ядра частиц на атомы, и они излучают радиоактивные волны. Радио, телевидение для своего вещания используют радиоволны, излучаемые ими волны, обладают большой длиной.

Возникновение излучения


Диполь электрический является самым простым элементом, производящий явление. Однако при процессе создается определенная система, которая состоит из двух частиц, колеблющееся по-разному типу.

Если частицы по прямой, при движении на встречу друг другу, то происходит отсоединение части электромагнитного поля, и образуются заряженные волны.

В физике такое явление называется неизотопное, так как возникающая энергия не обладает одинаковой силой. В данном случае не важна скорость и расположение элементов, так как действительные излучатели должны иметь большое количество элементов, которые обладают зарядом.

Исходное состояние, возможно изменить, если одноименные зарядные частицы начать стягивать к ядру, где происходит распределение зарядов. Такое соединение можно рассматривать как электрический диполь, так как получившаяся система будет полностью электронейтрального типа.

Если отсутствует диполь, то возможно создать процесс с помощью квадруполя. Так же в физике выделяют более сложную систему для получения излучения – это мультиполь.

Для образования таких частиц необходимо использовать контур с током, тогда при движении возможно возникновение квадрупольного излучения. Важно учитывать, что интенсивность магнитного намного меньше, чем электрического типа.

Реакция излучения


В процессе взаимодействия частица теряет часть своей собственной энергии, так как при движении на нее влияет определенная сила. Она в свою очередь влияет на скорость потока волн, при ее действии действующая сила движения замедляется. Такой процесс называется радиационное трение.

При данной реакции сила процесса будет весьма незначительной, однако скорость будет весьма высока и приближена, к скорости света. Данное явление можно рассмотреть на примере нашей планеты.

В магнитном поле содержится довольно много энергии, поэтому электроны, которые излучаются из космоса, не могут долететь до поверхности планеты. Однако существуют частицы космических волн, которые могут дойти до земли. У таких элементов должна быть высокая потеря собственной энергии.

Также выделяются размеры области пространства, это значение является важным при излучении. Данный фактор влияет на формирование электромагнитного поля излучения.

В этом состоянии движения частицы не большие, но быстрота отсоединения поля от элемента, равна свету, и получается, что процесс создания будет весьма активен. И как следствие получаются короткие электромагнитные волны.

В том случае, когда скорость движения частицы высока, и приблизительно равна свету, то время отсоединения поля увеличивается, данный процесс длится довольно долго и, следовательно, электромагнитные волны обладают высокой длиной. Так как их путь занимал больше обычного, и образование поля происходило довольно продолжительное время.

В квантовой физике также используется излучение, но при рассмотрении используются совершено другие элементы, это могут быть молекулы, атомы. В данном случае, явление излучения рассматривается и подчиняется законам квантовой механики.

Благодаря развитию науки, получилось возможным вносить поправки и изменять характеристики излучения.

Многие исследования показали, что излучения могут негативно влиять на человеческий организм. Все зависит от того, какой вид излучения, и как долго человек ему подвергался.

Ни для кого не секрет, что при химической реакции и распаде ядерных молекул, может наступить лучевое излучение, которое является опасным для живых организмов.

При их распаде может происходить моментальное и довольно сильное облучение. Окружающие предметы также могут производить излучение, это могут быть сотовые телефоны, микроволновые печи, ноутбуки.

Данные предметы посылают, как правило, короткие электромагнитные волны. Однако в организме может происходить накопление, что влияет на здоровье.

Вам хорошо известно, что основным источником тепла на Земле является Солнце. Каким же образом передаётся тепло от Солнца? Ведь Земля находится от него на расстоянии 15 10 7 км. Всё это пространство за пределами нашей атмосферы содержит очень разреженное вещество.

Как известно, в вакууме перенос энергии путём теплопроводности невозможен. Не может происходить он и за счёт конвекции. Следовательно, существует ещё один вид теплопередачи.

Изучим этот вид теплопередачи с помощью опыта.

Соединим жидкостный манометр при помощи резиновой трубки с теплоприёмником (рис. 12).

Если к тёмной поверхности теплоприёмника поднести кусок металла, нагретый до высокой температуры, то уровень жидкости в колене манометра, соединённом с теплоприёмником, понизится (рис. 12, а). Очевидно, воздух в теп-лоприёмнике нагрелся и расширился. Быстрое нагревание воздуха в теплоприёмнике можно объяснить лишь передачей ему энергии от нагретого тела.

Рис. 12. Передача энергии путем излучения

Энергия в данном случае передавалась не теплопроводностью. Ведь между нагретым телом и теплоприёмником находился воздух - плохой проводник тепла. Конвекция здесь также не может наблюдаться, поскольку тепло-приёмник находится рядом с нагретым телом, а не над ним. Следовательно, в данном случае передача энергии происходит путём излучения .

Передача энергии излучением отличается от других видов теплопередачи. Она может осуществляться в полном вакууме.

Излучают энергию все тела: и сильно нагретые, и слабо, например, тело человека, печь, электрическая лампочка и др. Но чем выше температура тела, тем больше энергии передаёт оно путём излучения. При этом энергия частично поглощается окружающими телами, а частично отражается. При поглощении энергии тела нагреваются по-разному, в зависимости от состояния поверхности.

Если повернуть теплоприёмник к нагретому металлическому телу сначала тёмной, а затем светлой стороной, то столбик жидкости в колене манометра, соединённом с теплоприёмником, в первом случае (см. рис. 12, а) понизится, а во втором (рис. 12, б) повысится. Это показывает, что тела с тёмной поверхностью лучше поглощают энергию, чем тела, имеющие светлую поверхность.

В то же время тела с тёмной поверхностью охлаждаются быстрее путём излучения, чем тела со светлой поверхностью. Например, в светлом чайнике горячая вода дольше сохраняет высокую температуру, чем в тёмном.

Способность тел по-разному поглощать энергию излучения используется на практике. Так, поверхность воздушных метеозондов, крылья самолётов красят серебристой краской, чтобы они не нагревались солнцем. Если же, наоборот, необходимо использовать солнечную энергию, например в приборах, установленных на искусственных спутниках Земли, то эти части приборов окрашивают в тёмный цвет.

Вопросы

  1. Как на опыте показать передачу энергии излучением?
  2. Какие тела лучше, а какие хуже поглощают энергию излучения?
  3. Как учитывает человек на практике различную способность тел поглощать энергию излучения?

Упражнение 5

  1. Летом воздух в здании нагревается, получая энергию различными способами: через стены, через открытое окно, в которое входит тёплый воздух, через стекло, которое пропускает солнечную энергию. С каким видом теплопередачи мы имеем дело в каждом случае?
  2. Приведите примеры, показывающие, что тела с тёмной поверхностью сильнее нагреваются излучением, чем со светлой.
  3. Почему можно утверждать, что от Солнца к Земле энергия не может передаваться конвекцией и теплопроводностью? Каким способом она передаётся?

Задание

С помощью уличного термометра измерьте температуру сначала на солнечной стороне дома, затем на теневой. Объясните, почему различаются показания термометра.

Это любопытно...

Термос . Часто бывает необходимо сохранить пищу горячей или холодной. Чтобы помешать телу охладиться или нагреться, нужно уменьшить теплопередачу. При этом стремятся сделать так, чтобы энергия не передавалась ни одним видом теплопередачи: теплопроводностью, конвекцией, излучением. В этих целях используют термос (рис. 13).

Рис. 13. Устройство термоса

Он состоит из стеклянного сосуда 4 с двойными стенками. Внутренняя поверхность стенок покрыта блестящим металлическим слоем, а из пространства между стенками сосуда выкачан воздух. Лишённое воздуха пространство между стенками почти не проводит тепло. Металлический же слой, отражая, препятствует передаче энергии излучением. Чтобы защитить стекло от повреждений, термос помещают в специальный металлический или пластмассовый футляр 3. Сосуд закупоривается пробкой 2, а сверху навинчивается колпачок 1.

Теплопередача и растительный мир . В природе и жизни человека растительный мир играет исключительно важную роль. Жизнь всего живого на Земле невозможна без воды и воздуха.

В слоях воздуха, прилегающих к Земле, и почве постоянно происходит изменение температуры. Почва нагревается днём, так как поглощает энергию. Ночью, наоборот, она охлаждается - отдаёт энергию. На теплообмен между почвой и воздухом влияет наличие растительности, а также погода. Почва, покрытая растительностью, плохо прогревается излучением. Сильное охлаждение почвы наблюдается также в ясные, безоблачные ночи. Излучение от почвы свободно уходит в пространство. Ранней весной в такие ночи наблюдаются заморозки. Во время облачности уменьшается потеря энергии почвы путём излучения. Облака служат экраном.

Для повышения температуры почвы и предохранения посадок от заморозков используют теплицы. Стеклянные рамы или изготовленные из плёнки хорошо пропускают солнечное излучение {видимое). Днём почва нагревается. Ночью невидимое излучение почвы стекло или плёнка пропускают хуже. Почва не замерзает. Теплицы препятствуют также движению тёплого воздуха вверх - конвекции.

Вследствие этого температура в теплицах выше, чем в окружающем пространстве.

Излучение, в самом общем виде, можно представить себе как возникновение и распространения волн, приводящее к возмущению поля. Распространение энергии выражается в виде электромагнитного, ионизирующего, гравитационного излучений и излучения по Хокингу. Электромагнитные волны – это возмущение электромагнитного поля. Они бывают радиоволновыми, инфракрасными (тепловое излучение), терагерцовыми, ультрафиолетовыми, рентгеновскими и видимыми (оптическими). Электромагнитная волна имеет свойство распространяться в любых средах. Характеристиками электромагнитного излучения являются частота, поляризация и длина. Наиболее профессионально и глубоко природу электромагнитного излучения изучает наука квантовая электродинамика. Она позволила подтвердить ряд теорий, которые широко используются в различных областях знаний. Особенности электромагнитных волн: взаимная перпендикулярность трех векторов - волнового, и напряженности электрического поля и магнитного поля; волны являются поперечными, а вектора напряженности в них совершают колебания перпендикулярно направлению ее распространения.

Тепловое же излучение возникает за счет внутренней энергии самого тела. Тепловое излучение - это излучение сплошного спектра, максимум которого соответствует температуре тела. Если излучение и вещество термодинамичны, излучение - равновесное. Это описывает закон Планка. Но на практике термодинамическое равновесие не соблюдается. Так более горячему телу свойственно остывать, а более холодному, напротив, нагреваться. Данное взаимодействие определено в законе Кирхгофа. Таким образом, тела обладают поглощающей способностью и отражающей способностью. Ионизирующее излучение - это микрочастицы и поля, имеющие способность ионизировать вещество. К нему относят: рентген и радиоактивное излучение с альфа, бета и гамма лучами. При этом ренгеновское излучение и гамма-лучи являются коротковолновыми. А бета и альфа частицы являются потоками частиц. Существуют природные и искусственные источники ионизации. В природе это: распад радионуклидов, лучи космоса, термоядерная реакция на Солнце. Искусственные это: излучение рентгеновского аппарата, ядерные реакторы и искусственные радионуклиды. В быту используются специальные датчики и дозиметры радиоактивного излучения. Всем известный Счетчик Гейгера способен идентифицировать корректно только гамма-лучи. В науке же используются сцинтилляторы, которые отлично разделяют лучи по энергиям.

Гравитационным считается излучение, в котором возмущение пространственно временного поля происходит со скоростью света. В общей теории относительности гравитационное излучение обусловлено уравнениями Эйнштейна. Что характерно, гравитация присуща любой материи, которая движется ускоренно. Но вот большую амплитуду гравитационной волне может придать только излучать большой массы. Обычно же гравитационные волны очень слабые. Прибор, способный их зарегистрировать, - это детектор. Излучение Хокинга же представляет собой скорее гипотетическую возможность испускать частицы черной дырой. Эти процессы изучает квантовая физика. Согласно данной теории черная дыра только поглощает материю до определенного момента. При учете квантовых моментов получается, что она способна излучать элементарные частицы.

Ионизирующее излучение (далее - ИИ) - это излучение, взаимодействие которого с веществом приводит к ионизации атомов и молекул, т.е. это взаимодействие приводит к возбуждению атома и отрыву отдельных электронов (отрицательно заряженных частиц) из атомных оболочек. В результате, лишенный одного или нескольких электронов, атом превращается в положительно заряженный ион - происходит первичная ионизация. К ИИ относят электромагнитное излучение (гамма-излучение) и потоки заряженных и нейтральных частиц - корпускулярное излучение (альфа-излучение, бета-излучение, а также нейтронное излучение).

Альфа-излучение относится к корпускулярным излучениям. Это поток тяжелых положительно заряженных а-частиц (ядер атомов гелия), возникающее в результате распада атомов тяжелых элементов, таких как уран, радий и торий. Поскольку частицы тяжелые, то пробег альфа-частиц в веществе (то есть путь, на котором они производят ионизацию) оказывается очень коротким: сотые доли миллиметра в биологических средах, 2,5—8 см в воздухе. Таким образом, задержать эти частицы способен обычный лист бумаги или внешний омертвевший слой кожи.

Однако вещества, испускающие альфа-частицы, являются долгоживущими. В результате попадания таких веществ внутрь организма с пищей, воздухом или через ранения, они разносятся по телу током крови, депонируются в органах, отвечающих за обмен веществ и защиту организма (например, селезенка или лимфатические узлы), вызывая, таким образом, внутреннее облучение организма. Опасность такого внутреннего облучения организма высока, т.к. эти альфа-частицы создают очень большое число ионов (до нескольких тысяч пар ионов на 1 микрон пути в тканях). Ионизация, в свою очередь, обуславливает ряд особенностей тех химических реакций, которые протекают в веществе, в частности, в живой ткани (образование сильных окислителей, свободного водорода и кислорода и др.).

Бета-излучение (бета-лучи, или поток бета-частиц) также относится к корпускулярному типу излучения. Это поток электронов (β--излучение, или, чаще всего, просто β -излучение) или позитронов (β+-излучение), испускаемых при радиоактивном бета-распаде ядер некоторых атомов. Электроны или позитроны образуются в ядре при превращении нейтрона в протон или протона в нейтрон соответственно.

Электроны значительно меньше альфа-частиц и могут проникать вглубь вещества (тела) на 10-15 сантиметров (ср. с сотыми долями миллиметра у а-частиц). При прохождении через вещество бета-излучение взаимодействует с электронами и ядрами его атомов, расходуя на это свою энергию и замедляя движение вплоть до полной остановки. Благодаря таким свойствам для защиты от бета-излучения достаточно иметь соответствующей толщины экран из органического стекла. На этих же свойствах основано применение бета-излучения в медицине для поверхностной, внутритканевой и внутриполостной лучевой терапии.

Нейтронное излучение - еще один вид корпускулярного типа излучений. Нейтронное излучение представляет собой поток нейтронов (элементарных частиц, не имеющих электрического заряда). Нейтроны не оказывают ионизирующего действия, однако весьма значительный ионизирующий эффект происходит за счет упругого и неупругого рассеяния на ядрах вещества.

Облучаемые нейтронами вещества могут приобретать радиоактивные свойства, то есть получать так называемую наведенную радиоактивность. Нейтронное излучение образуется при работе ускорителей элементарных частиц, в ядерных реакторах, промышленных и лабораторных установках, при ядерных взрывах и т. д. Нейтронное излучение обладает наибольшей проникающей способностью. Лучшими для защиты от нейтронного излучения являются водородсодержащие материалы.

Гамма излучение и рентгеновское излучение относятся к электромагнитным излучениям.

Принципиальная разница между двумя этими видами излучения заключается в механизме их возникновения. Рентгеновское излучение - внеядерного происхождения, гамма излучение - продукт распада ядер.

Рентгеновское излучение, открыто в 1895 году физиком Рентгеном. Это невидимое излучение, способное проникать, хотя и в разной степени, во все вещества. Представляет собой электромагнитное излучение с длиной волны порядка от - от 10 -12 до 10 -7 . Источник рентгеновских лучей - рентгеновская трубка, некоторые радионуклиды (например, бета-излучатели), ускорители и накопители электронов (синхротронное излучение).

В рентгеновской трубке есть два электрода - катод и анод (отрицательный и положительный электроды соответственно). При нагреве катода происходит электронная эмиссия (явление испускания электронов поверхностью твёрдого тела или жидкости). Электроны, вылетающие из катода, ускоряются электрическим полем и ударяются о поверхность анода, где происходит их резкое торможение, вследствие чего возникает рентгеновское излучение. Как и видимый свет, рентгеновское излучение вызывает почернение фотопленки. Это одно его из свойств, основное для медицины - то, что оно является проникающим излучением и соответственно пациента можно просвечивать с его помощью, а т.к. разные по плотности ткани по-разному поглощают рентгеновское излучение - то мы можем диагностировать на самой ранней стадии многие виды заболеваний внутренних органов.

Гамма излучение имеет внутриядерное происхождение. Оно возникает при распаде радиоактивных ядер, переходе ядер из возбужденного состояния в основное, при взаимодействии быстрых заряженных частиц с веществом, аннигиляции электронно-позитронных пар и т.д.

Высокая проникающая способность гамма-излучения объясняется малой длиной волны. Для ослабления потока гамма-излучения используются вещества, отличающиеся значительным массовым числом (свинец, вольфрам, уран и др.) и всевозможные составы высокой плотности (различные бетоны с наполнителями из металла).

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Излучение

Излучени е - перенос энергии путем испускания электромагнитных волн. Это могут быть солнечные лучи, а также лучи, испускаемые нагретыми телами, находящимися вокруг нас. Эти лучи называют тепловым излучением. Когда излучение, распространяясь от тела-источника, достигает других тел, то часть его отражается, а часть ими поглощается. При поглощении энергия теплового излучения превращается во внутреннюю энергию тел, и они нагреваются. Все окружающие нас предметы излучают тепло в той или иной мере.

В каком платье летом жарко

При повышении температуры тела тепловое излучение увеличивается, т.е. чем выше температура тела, тем интенсивнее тепловое излучение. Как фантастично выглядел бы окружающий мир, если бы мы могли видеть недоступные нашему глазу тепловые излучения других тел!

ЗНАЕШЬ ЛИ ТЫ? Змеи отлично воспринимают тепловое излучение, но не глазами, а кожей. Поэтому и в полной темноте они способны обнаружить теплокровную жертву.

Созданы материалы, с помощью которых можно превращать тепловое излучение в видимое. Их используют при изготовлении специальной фотопленки для съемки в абсолютной темноте и в приборах ночного видения - тепловизорах.

приборы ночного видения тепловизоры

1) Какой из видов теплопередачи сопровождается переносом вещества А) Теплопроводность Б) Конвекция В) Излучение Тест по теме: виды теплопередачи

2) При теплопередаче излучением А) Энергия переносится струями и потоками вещества Б) Энергия передается через слои неподвижного вещества В) Энергию можно передать в безвоздушном пространстве

3) Каким способом осуществляется передача энергии от Солнца к Земле А) Теплопроводность Б) Конвекция В) Излучение

4) После включения настольного светильник а с лампой книга лежащая на столе нагрелась. Выберите правильное утверждение А) Книга нагрелась вследствие конвекции в воздухе Б) Книга нагрелась вследствие излучения В) Книга нагревается тем сильнее, чем светлее обложка

5) Теплопередача излучением и конвекцией возможна через А) Атмосферный воздух Б) Пуховое одеяло В) Металлическую пластину

6) От чего зависит интенсивность конвекции А) От скорости движения молекул Б) От разницы температур В) От силы ветра

7) Благодаря какому способу теплопередачи можно греться около костра? А) Теплопроводности Б) Конвекции В) Излучению

8) Какой вид теплопередачи НЕ сопровождается переносом вещества? А) Конвекция и теплопроводность; Б) Излучение и конвекция; В) Теплопроводность и излучение

9) Как называется вид конвекции, при котором теплый воздух от батареи поднимается вверх А) Искусственная Б) Естественная В) Принудительная

10) Как называется вид конвекции, когда мы мешам ложкой горячий чай для охлаждения А) Искусственная Б) Естественная В) Принудительная