Мнс микробиология. Главный комплекс гистосовместимости, его основные биологические функции. II класс HLA

МНС человека имеет акроним HLA (от англ. Human Leukocyte Antigens – антигены лейкоцитов человека). Это связано с тем, что они были впервые обнаружены на лейкоцитах человека в реакциях с сыворотками от многорожавших женщин и больных, получавших многократные гемотрансфузии. Такие сыворотки содержат антилейкоцитарные антитела, которые образуются в ответ на аллоантигены плода или доноров крови.

Комплекс HLA локализован на хромосоме 6, занимая область размером 3-4 6 пар нуклеотидов. Представления о масштабах HLA-генофонда заметно расширились с внедрением моноклональных анти-HLA антител и молекулярно-генетического анализа, т.е. прямого изучения HLA-генов. Согласно имеющимся данным комплекс HLA включает около 800 аллелей, альтернативное наследование которых обеспечивает беспрецедентную мозаику HLA-генотипов. В соответствии с генетической структурой HLA каждый индивид наследует около 20 аллельных генов (см. ниже). Благодаря столь малой выборке (20 из 800) вероятность полного совпадения индивидуальных HLA-генотипов (и, следовательно, HLA-фенотипов) ничтожно мала. Совпадение возможно лишь по отдельным аллелям или их комбинациям. Этим определяется вероятность относительно успешного приживления тканей в аллогенных парах «донор-реципиент».

Лишь малая часть МНС(HLA)-области кодирует антигены гистосовместимости. Кроме них здесь локализовано более 100 генов, которые не имеют отношения к тканевому полиморфизму и иммунологическим функциям молекул МНС. Тем не менее этот участок ДНК продолжают называть главным комплексом гистосовместимости, подчеркивая исторический приоритет и значимость MHC-зависимых реакций.

Дополнительное разнообразие вносит диплоидность соматических клеток, благодаря которой каждая из них содержит по два комплекта МНС-генов, на материнской и отцовской хромосомах. Это означает, что индивид может иметь не более двух аллелей каждого HLA-гена (по одному на материнской и отцовской хромосомах) и, следовательно, не более двух разновидностей каждого HLA-антигена.



Набор генов одной хромосомы, называется гаплотипом (от греч. haplous – единственный). МНС-гаплотипы кодоминантны, т.е. одинаково влияют на фенотип клеток. Это означает, что HLA-фенотип (т.е. полный комплект молекул HLA, экспрессируемых клетками данного организма) является суммарным выражением двух гаплотипов, унаследованных по материнской и отцовской линиям.

МНС(HLA)-фенотип можно определить как уникальную совокупность поверхностных антигенов, по которой клетки одного индивида отличаются от всех остальных особей данного вида животных. Следует понимать принципиальное различие между полиморфизмом молекул МНС и антигенных рецепторов В и Т лимфоцитов (BCR и TCR). В первом случае речь идет об аллотипии, связанной с альтернативным наследованием аллельных генов, циркулирующих в популяциях человека и животных; во втором – об идиотипии, т.е. о структурных вариантах одних и тех молекул, продуцируемых разными клонами клеток. Иными словами, идиотипия отражает гетерогенность молекул на уровне клеточных популяций, возникающую в результате мутаций и рекомбинационных перестроек генетического материала соматических клеток. Аллотипия определяется перетасовкой (рекомбинацией) генов в зародышевых клетках. Она связана с половым процессом и формируется на уровне «организменных» популяций.

Для всех видов животных характерно наличие двух основных классов МНС – МНС-I и МНС-II. При общей стратегии они различаются по генетической, структурной организации, тканевому распределению и функциям.

HLA-I. Молекулы I класса содержатся на поверхности клеток всех типов, кроме эритроцитов и ворсинчатого трофобласта. Они представляют гетеродимеры, состоящие из двух полипептидных цепей - тяжелой (46 кД) и легкой (12 кД) (рис. 1). Из них только тяжелая субъединица (α-цепь) является продуктом главного комплекса гистосовместимости, и именно с ней связаны иммунологические функции молекулы. α-цепь пронизывает плазматическую мембрану и имеет три внеклеточных домена – α1, α2 и α3. Вариабельность молекулы сконцентрирована в α1 и α2 доменах; домен α3 лишен полиморфизма.

Легкая (β) цепь представлена β2-микроглобулином. Это продукт гена, который локализован на хромосоме 15, т.е. не входит в состав комплекса HLA. β2-микроглобулин генетически однороден и напрямую не участвует в реализации функций HLA-I. Его роль сводится к транспорту α-цепи на поверхность клетки (у мутантных мышей, лишенных β2-микроглобулина, молекулы I класса не экспрессируются). β2-микроглобулин не имеет трансмембранного участка, удерживаясь на мембране за счет нековалентной связи с α3-доменом1.

Рис. 1. Структура молекул главного комплекса гистосовместимости (G. Reeves, p. 46).

Молекулы HLA-I представлены тремя наиболее важными подклассами – А (HLA-A), В (HLA-B) и С (HLA-C). Они кодируются одноименными генами, которым соответствует определенная позиция (локус) на хромосоме. По данным молекулярно-генетического анализа общее число аллельных вариантов для генов HLA-1 приближается к 400 (HLA-A – 108, HLA-B – 223, HLA-C – 67). Количество известных HLA-1 антигенов гораздо меньше – около 100 (HLA-A – 28, HLA-B – 61, HLA-C –10)1. Они обозначаются цифрами, которые добавляются к буквенному обозначению подкласса (например, А1, В27, С8).

В генотипе каждого человека имеется шесть генов HLA-I – по три в каждом гаплотипе. При несовпадении материнского и отцовского гаплотипов по генам всех трех локусов (А, В и С) индивид будет иметь наиболее полный HLA-фенотип, т.е. шесть аллотипических вариантов HLA-I (например, А4,14; В2,31; С4,10). Если гаплотипы частично дублируют друг друга, набор молекул HLA-I будет редуцирован (например, А4; В2,44; С6). То же самое справедливо для HLA-II (см. ниже).

Недавно открыты дополнительные локусы HLA-I: E, F и G. Их гены отличаются ограниченным полиморфизмом и необычным тканевым распределением своих продуктов (HLA-E, HLA-F и HLA-G). Функции этих так называемых «неклассических» HLA(МНС)-молекул неизвестны, но они не участвуют в представлении антигенов, по крайней мере «обычных пептидов» (см. ниже).

HLA-II. Молекулы II класса построены из двух нековалентно связанных пептидных цепей примерно одинакового размера – α (35 кД) и β (28 кД). Обе они являются продуктами главного комплекса гистосовместимости и участвуют в реализации его иммунологических функций. Каждая цепь состоит из двух внеклеточных доменов (α1-α2 и β1-β2), которые прочно фиксированы на клетках при помощи трансмембранного участка молекулы (рис. 8). Вариабельные последовательности входят в состав α1 и β1 доменов; α2 и β2 домены не имеют аллотипов.

В отличие от HLA-I, конститутивная (т.е. постоянная) экпрессия молекул II класса ограничена клетками иммунной системы, презентирующими антигены Т-хелперам. Это так называемые профессиональные антигенпредставляющие клетки – дендритные клетки, макрофаги, В-лимфоциты. Появление HLA-II на других клетках указывает на их активацию, т.е. является индуцибельным.

Впрочем, динамичность экспрессии молекул МНС (MHC-I, MHC-II) характерна для всех клеток. Она зависит от функционального состояния клетки, меняясь под влиянием различных стимулов (например, цитокинов). Это однин из механизмов, контролирующих индукцию и реализацию иммуного ответа.

Подобно HLA-I, молекулы HLA-II представлены тремя основными подклассами – DR, DQ и DP. Гены, кодирующие их α- и β-цепи, сконцентрированы в одноименных локусах на 6-й хромосоме. Наиболее полиморфны гены β-цепей: они представлены 367 аллельными вариантами (DR – 249, DQ – 36, DP – 82). Гены α-цепей гораздо однороднее – 36 разновидностей (DR – 3, DQ – 20, DP – 13).

Буква "D" ошибочно продолжает нотацию HLA, начатую локусами А, В и С. Эти обозначения возникли до разделения HLA на классы. Область D оказалась суммой нескольких локусов (DR, DQ, DP) и по сути является синонимом II класса. «Неклассические» молекулы HLA-II включают HLA-DM и HLA-DN. Их функции неизвестны или гипотетичны.

В генотипе каждого человека имеется 12 функционально значимых (т.е. экспрессируемых) генов HLA-II – шесть в каждом гаплотипе (по три гена для α (DRA, DQA, DPA) и β (DRB, DQB, DPB) цепей). В связи с доминированием полиморфизма В(β)-генов в цифровой формуле молекул II класса обычно указываются разновидности только β-цепей (например, R4,8/DQ1,6/DP5).

Функции МНС (HLA)

Отторжение чужеродных тканей, которое происходит в ситуациях, искусственно создаваемых человеком, ничего не говорит о физиологических функциях МНС. С этой точки зрения неудачна и терминология: понятие «главный комплекс гистосовместимости» не отражает природного назначения его продуктов. Это стало очевидным после утверждения центральной позиции МНС в представлении (презентации) антигенов Т-лимфоцитам. Возможно, это не единственное, но, безусловно, главное назначение данной системы.

МНС-зависимое представление антигенов имеет четкую направленность, которая проявляется в том, что молекулы I и II классов обеспечивают альтерантивную презентацию антигенов двум основным категориям Т-клеток – CD8 и CD4. Такая адресность объясняется лиганд-рецепторной комплементарностью в парах CD8 – МHC-I и CD4 – МНС-II. Это обеспечивает избирательное связывание CD8 с МНС-I (a3-домен), а CD4 – с МНС-II (b2-домен). Этим объясняется корецепторная функция молекул CD4 и CD8 в распознавании антигенов Т-лимфоцитами (рис. 2).

Зависимость реакций Т-лимфоцитов от МНС называется рестрикцией (от англ. restriction – ограничение). Говорят, что Т-лимфоциты рестриктированы по МНС, причем CD4 Т-лимфоциты рестриктированы по МНС(HLA)-I, а CD8 – по МНС(HLA)-II.

Рис. 2. Молекулы, принимающие участие в распознавании антигенов Т-лимфоцитами. Т-лимфоциты рестриктированы по МНС, т.е. распознают антигены (точнее продукты их протеолиза), презентируемые молекулами главного комплекса гистосовместимости (МНС) антигенпредставляющих клеток. А: Антигенные пептиды в комплексе с молекулами МНС-I воспринимаются CD8 Т-клетками. CD8 играет роль корецептора, реагируя с консервативным (неполиморфным) участком МНС-I. Взаимодействие в системе TCR-антиген/МНС-I-СD-8 генерирует сигнал, который усиливается и транслируется внутрь клетки при помощи CD3-комплекса. В: Антигенные пептиды, презентируемые молекулами МНС-II, воспринимаются CD4 Т-лимфоцитами. Благодаря комплементарности c МНС-II, СD4 выполняет функцию корецептора, укрепляя контакт между TCR и комплексом антиген/МНС-II. Сигнал транслируется в клетку молекулами костимулирующего CD3-комплекса (D.M. Weir, J. Stewart. Immunology. 8 th ed. Churchill & Levinstone. 1997).

Учитывая универсальность тканевого распространения молекул I класса, следует ожидать, что в представлении антигенов могут участвовать многие типы клеток. Именно так обстоит дело на этапе реализации иммунного ответа, когда любая клетка, презентирующая на своей поверхности “чужие” антигены в комплексе с МНС-I, атакуется цитотоксическими (СD8) Т-лимфоцитами. Активность молекул II класса связана главным образом с профессиональными антигенпредставляющими клетками. Они презентируют антигены Т-хелперам, опираясь на корецепторную активность CD4. Возможность индуцированной экспрессии МНС-II на эндотелиоцитах, эпителиальных и ряде других клеток допускает вероятность «непрофессиональной» MHC-II–презентации антигенов CD4 Т-лимфоцитам. Это возможно на этапе реализации иммунного ответа.

Для индукции иммунного ответа этого недостаточно. Здесь требуется более сложная кооперация антигенпредставляющих клеток и Т-лимфоцитов. Она происходит при участии нескольких пар комплементарных адгезивных молекул и цитокинов на территории лимфоидных тканей, т.е. в зоне, оптимальной для взаимодействия иммунокомпетентных клеток (см. «Индукция иммунного ответа»).

Презентация антигенов молекулами I и II классов происходит по общей схеме. Короткие пептиды (Т-эпитопы), которые образуются из белковых антигенов в результате внутриклеточного протеолиза (процессинг), соединяются с комплементарными молекулами МНС и вместе с ними выносятся на поверхность клетки*.

* Антигенные пептиды, воспринимаемые МНС-I и MHC-II, построены соответственно 9-10 и 12-25 аминокислот. Большинство из них являются внутренними фрагментами молекул, которые обнажаются после протеолиза. Пептидосвязывающий участок молекул МНС представляет собой щель, образуемую комбинацией вариабельных доменов: a1-a2 (MHC-I) и a1-b1 (MHC-II). Аллельные варианты МНС отличаются по конфигурации “пептидной ловушки” и, следовательно, по сродству к различным пептидам.

Принципиальное различие между МНС-I и MHC-II связано с источником (происхождением) представляемых антигенов. Молекулы I класса презентируют антигены, которые образуются внутри собственных клеток – “эндогенные пептиды”. К их числу относятся производные вирусных и опухолевых антигенов. Молекулы II класса воспринимают пептиды экзогенной природы. Они образуются из материала, поступающего в клетки извне, путем эндоцитоза.

Это различие не абсолютно. При гибели клеток синтезированные ими (т.е. эндогенные) антигены могут поглощаться дендроцитами и макрофагами и экспрессироваться в комплексе с MHC-II, как это характерно для экзогенных пептидов. Возможен и альтернативный механизм: переключение потока антигенных пептидов с экзогенного пути (комплексирование с MHC-II) на эндогенный (комплексирование с MHC-I). Такого рода перекрестная презентация содействует развитию полноценных Т-клеточных реакций, нацеленных, в частности, против вирусов, которые не реплицируются в профессиональных антигенпредставляющих клетках.

Повторим, что ассортимент каждого индивида ограничен примерно 20 вариантами аллельных генов и соответственно молекул MHC(HLA). Это несопоставимо с изобилием антигенных пептидов, которые потенциально могут быть представлены Т-лимфоцитам. Отюда следует, что каждая молекула МНС способна презентировать не один, а множество пептидов1. В то же время все пептиды, воспринимаемые однотипным вариантом МНС, имеют элементы структурного сходства, которые обеспечивают фиксацию в “пептидной ловушке” МНС. Это не лишает их антигенной (эпитопной) индивидуальности, так как специфичность Т-эпитопов определяется всего 1-2 аминокислотами.

Вероятность и прочность связывания разных пептидов с одной и той же молекулой МНС неодинакова, отражая степень родства (комплементарности) между пептидом и МНС. Справедливо и обратное: благодаря особенностям конфигурации пептидосвязывающего участка аллельные варианты МНС различаются по набору презентируемых ими пептидов. Здесь сконцентрирована идея о генетическом контроле иммунного ответа в системе МНС. Она сводится к тому, что индивиды с разными МНС(HLA)-фенотипами могут неодинаково (даже альтернативно) реагировать на один и тот же антиген. Это объясняется качеством взаимодействия антигенных пептидов с аллельными вариантами молекул МНС – от выраженной до нулевой аффинности. С этой точки зрения, концепция о генах, контролирующих силу иммунного ответа (Ir-гены, от англ. Immune response), во многом сливается с представлениями о главном комплексе гистосовместимости, прежде всего МНС-II. Это понятно, так как молекулы II класса презентируют антигены Т-хелперам, от активации которых зависят все формы иммунного ответа.

Презентация антигенов – сложный процесс, связанный с участием многих молекул. Для ряда из них возможны аллельные варианты, которые неодинаково влияют на функции МНС и поэтому тоже включаются в генетический контроль за иммунным ответом.

Влияние МНС на реактивность к антигенам наиболее отчетливо проявляется в опытах на линейных (инбредных) животных. Но положительные связи между МНС(HLA)-фенотипом и особенностями иммуного ответа известны и для человека. Так, носители аллелей HLA-DR2 и HLA-DR5 характеризуются склонностью к образованию IgE антител против аллергена пыльцы амброзии. Протективные пептиды вируса гриппа А встраиваются в молекулы В27 и А2; поэтому носители данных аллелей более устойчивы к гриппозной инфекции.

Загадкой остается предрасположенность к ряду болезней у лиц с определенным HLA-фенотипом, т.е. у носителей определенных HLA-I/HLA-II аллелей или их комбинаций. На этот счет имеется несколько гипотез, одна из которых базируется на неодинаковой способности аллотипических вариантов HLA связывать (презентировать) разные пептиды. Яркий пример – анкилозирующий спондилит (болезнь Бехтерева): около 90% больных являются носителями гена В27. Допускают, что молекулы этого аллотипа могут быть рецептором неизвестного вируса или избирательно представлять патогенетически значимые пептиды CD8 T-лимфоцитам.

Интригует и вопрос о причинах, приведших к формированию столь полиморфной системы генов и их продуктов. Согласно наиболее популярной версии главный комплекс гистосовместимости эволюционировал как механизм, обеспечивающий распознавание достаточно большого количества антигенов для оптимальной защиты каждого вида животных от инфекционных агентов. Бесконечное многообразие МНС-генотипов гарантирует полноценность антигенраспознающего потенциала иммунной системы на уровне популяции. В то же время каждый из ее отдельных представителей, обладая малой выборкой из общего числа аллельных МНС-генов, ограничен более узким набором антигенпрезентирующих молекул. Иными словами, индивидуализация МНС влияет на спектр воспринимаемых антигенов и, следовательно, на качество иммунитета против экзогенной агрессии. Неадекватные аллели и их комбинации выбраковываются естественным отбором.

Не исключено, что специфика МНС оказывает влияние и на другие проявления биологической индивидуальности. Непонятной (но, вряд ли, случайной) является экспрессия на поверхности клеток аутологичных (собственных) пептидов в комплексе с МНС-I. Более того, на долю чужих антигенов приходится ничтожная часть пептидов, встраиваемых в молекулы I класса. Возможно, за этим скрыт механизм, поддерживающий иммунологическую толерантность к собственным тканям, но смысл может быть и другим. Замечено, например, что МНС-генотип влияет на сексуальное поведение животных. При спаривании мыши отдают предпочтение партнерам гетерологичных линий, т.е. особям с другим МНС-генотипом. Поразительно, но речь скорее всего идет о способности дифференцировать структурные особенности МНС по запаху, т.е. продукты МНС-аллельных генов играют роль феромонов. В этом есть логика. Она нацелена на повышение генетического полиморфизма популяции.

Естественно, для человека это невозможно. Но утеряв функцию выбора сексуального партнера, HLA-система «пытается» защитить его от появления HLA-гомозигот. Было проведено сопоставление совместимых по антигенам HLA классов I и II супругов в группе с нормально протекающей беременностью и в группе с беременностью, неоднократно прерывавшейся спонтанным абортом. Оказалось, что в группе с физиологически протекающей беременностью более чем в половине случаев муж и жена были полностью несовместимы по HLA-II. Количество HLA-совместимых пар по антигенам класса I составило около 2%. Напротив, в группе женщин с привычной невынашиваемостью только 26% супружеских пар оказались несовеместимыми по антигенам HLA-I; совместимость по антигенам класса II наблюдалась более чем в половине случаев (цит. Р.М.Хаитов, Л.П.Алексеев. Физиологическая роль главного комплекса гистосовместимости человека. Иммунология, 2001, № 3, С. 4-12).


1От англ. B С ell R eceptor.

2 Мембраносвязанная и секреторная формы иммуноглобулинов образуются благодаря альтернативному сплайсингу первичного ДНК-транскрипта (мРНК). Секреторная форма лишена трансмембранного фрагмента, необходимого для закрепления молекулы на клеточной мембране.

3 На определенных этапах «доантигенной» дифференцировки В-лимфоциты содержат mIgD. Его участие в индукции иммунного ответа остается неясным. В отличие от IgM, лишь ничтожная часть IgD cекретируется в среду.

4 mIg вместе с CD79a и CD79b образует рецепторный комплекс В-лимфоцитов (BCR-комплекс).

1От англ. T С ell R eceptor.

1 Вместе с TCR компоненты CD3 образуют рецепторный комплекс Т-лимфоцитов (TCR-

комплекс). Цепи TCR экспрессируются на клеточной мембране только в сочетании с CD3.

1 Средняя вероятность полной MHC(HLA)-идентичности двух произвольно взятых людей приближается к 1 на 1 000 000 (цит. Р.М.Хаитов, Л.П.Алексеев. Физиологическая роль главного комплекса гистосовместимости человека. Иммунология, 2001, № 3, С. 4-12).

1β2-микроглобулин легко сбрасывается с клетки, и его определение в крови и моче использует

ся в диагностике некоторых (прежде всего гематологических) заболеваний.

1Цит. Р.М. Хаитов и соавт. Достижения иммуногенетики – медицине. Иммунология, 1999, № 1, с. 10-17

1 Речь идет не об одновременной презентации, а о потенциальной способности связывать разные

антигенные пептиды.


Чарлз Б . Карпентер (Charles В . Carpenter)

Антигены, обеспечивающие внутривидовые различия особей, обозначаются как аллоантигены, а когда они включаются в процесс отторжения аллогенных тканевых трансплантатов, то приобретают название антигенов тканевой совмести­мости (гистосовместимости). Эволюция закрепила единичный участок тесно сцепленных генов гистосовместимости, продукты которых на поверхности клеток обеспечивают сильный барьер при аллотрансплантации. Термины «major histocompatibility antigens» (главные антигены гистосовместимости) и «major histocompatibility gene complex» (MHC) (главный генный комплекс гистосовмести­мости) относятся соответственно к продуктам генов и генам этого хромосомного участка. Многочисленные минорные антигены гистосовместимости, наоборот, кодируются множественными участками генома. Им соответствуют более слабые аллоантигенные различия молекул, выполняющих разнообразные функции. Структуры, несущие детерминанты MHC, играют значительную роль в иммуни­тете и самораспознавании в процессе дифференцировки клеток и тканей. Инфор­мация о МНС-контроле иммунного ответа получена в опытах на животных, когда гены иммунного ответа были картированы внутри MHC-у мышей (Н-2), крыс (RT1), морских свинок (GPLA). У человека MHC назван HLA. Отдельным бук­вам аббревиатуры HLA придается различное значение, и с международного согласия HLA служит для обозначения человеческого МНС-комплекса.

Относительно MHC можно сделать несколько обобщений. Во-первых, в малом участке (менее 2 сантиморган) MHC кодируется три класса генных продуктов. Молекулы класса I, экспрессируемые практически всеми клетками, содержат одну тяжелую и одну легкую полипептидную цепи и являются продуктами трех редуплицированных локусов-HLA-A, HLA-B и HLA-C. Молекулы класса II, экспрессия которых ограничивается В-лимфоцитами, моноцитами и активирован­ными Т-лимфоцитами, содержат две полипептидные цепи (aи b) неравной вели­чины и являются продуктами нескольких тесно сцепленных генов, в сумме обо­значаемых как зона HLA-D. Молекулы класса III представляют собой компонен­ты комплемента С4, С2 и Bf. Во-вторых, молекулы классов I и II образуют комп­лекс с псевдоантигеном, или антиген гистосовместимости и псевдоантиген слитно распознаются Т-лимфоцитами, имеющими соответствующий рецептор для антиге­на. Распознавание своего и несвоего при запуске и в эффекторной фазе иммунно­го ответа непосредственно направляется молекулами I и II классов. В-третьих, четких ограничений межклеточных взаимодействий, в которых участвуют супрессорные Т-лимфоциты, у человека не выявлено, но роль генов HLA достаточно важна для некоторых проявлений супрессорной Т-клеточной активности. В-чет­вертых, в МНС-регионе локализуются гены ферментных систем, не имеющих непосредственного отношения к иммунитету, но важных для роста и развития скелета. Известные локусы HLA на коротком плече 6-й хромосомы представлены на 63-1.

Локусы системы HLA. Антигены класса I. HLA-антигены I класса определяются серологически с помощью человеческих сывороток, главным обра­зом от многорожавших женщин, и в меньшей степени с помощью моноклональных антител. Антигены I класса путствуют с разной плотностью во многих тканях организма, включая В-клетки, Т-клетки, тромбоциты, но не на зрелых эритроцитах. Количество серологически выявляемых специфичностей велико, и система HLA является наиболее полиморфной из известных генетических систем человека. Внутри HLA-комплекса для серологически выявимых HLA антигенов I класса четко определяются три локуса. Каждый антиген 1 класса содержит b 2 -микроглобулиновую субъединицу (мол. масса 11500) и тяжелую цепь (мол. масса 44000), несущую антигенную специфичность (63-2). Существует 70 четко определенных А- и В-специфичностей и восемь специфичностей локуса С. Обозначение HLA обычно путствует в наименовании антигенов главного комплекса гистосовместимости, но может не употребляться, когда позволяет контекст. Антигены, неокончательно классифицированные ВОЗ, имеют в обозна­чении букву w после названия локуса. Номер, следующий за обозначением локу­са, служит собственным названием антигена. HLA-антигены населения Африки, Азии и Океании в настоящее время недостаточно четко определены, хотя они включают часть общих антигенов, свойственных лицам западноевропейского происхождения. Распределение HLA-антигенов различно в разных расовых груп­пах, и они могут быть использованы как антропологические маркеры в изучении заболеваний и миграционных процессов.

63-1. Схематическое изображение хромосомы 6.

Показана локализация зоны HLA в регионе 21 короткого плеча. Локусы HLA-A, HLA-B и HLA-C кодируют тяжелые цепи класса I (44000), тогда как b 2 -микроглобулиновая легкая цепь (11500) молекул класса I кодируется геном хромосомы 15. Зона HLA-D (класс II) расположена центромерно по отношению к локусам А, В и С с тесно сцеп­ленными генами компонентов комплемента С4А, С4В, Bf и С2 на участке B-D. Порядок расположения генов комплемента не установлен. Каждая молекула класса II D-региона образована a- и b-цепями. Они путствуют на клеточной поверхности в разных участ­ках (DP, DQ и DR). Цифра, предшествующая знакам aи b, означает, что существуют различные гены для цепей данного типа, например, для DR существует три гена b-цепей, так что экспрессируемые молекулы могут быть 1ba, 2baили 3ba. Антигены DRw52(MT2) и DRw53(MT3) находятся на 2b-цепи, тогда как DR - на lb-цепи. DR неполиморфен, а молекулы DQ-антигенов полиморфны как по a-, так и по b-цепям (2a2b). Другие типы DQ (1a1b) имеют ограниченный полиморфизм. Полиморфизм DP связан с b-цепями. Общая протяженность HLA-региона- около 3 сМ.

Поскольку хромосомы парны, каждый индивид имеет до шести серологически определимых антигенов HLA-A, HLA-B и HLA-C, по три от каждого из родителей. Каждый из этих наборов обозначается как гаплотип, и в соответствии с простым менделевским наследованием четвертая часть потомства имеет идентичные гаплотипы, половина - часть общих гаплотипов и оставшаяся четверть - полностью несовместима (63-3). Значение роли этого генного комплекса в транспланта­ционном ответе подтверждается тем, что подбор по гаплотипу пар донор - реципиент среди потомства одного поколения обеспечивает наилучшие результа­ты при трансплантации почек - около 85-90% длительного выживания (гл. 221).

Антигены класса II. Зона HLA-D примыкает к локусам класса I на коротком плече 6-й хромосомы (63-1). Этот регион кодирует серию моле­кул класса II, каждая из которых содержит a-цепь (мол, масса 29000) и b-цепь (мол. масса 34000) (63-2). Несовместимость по этому региону, особенно по антигенам DR, определяет пролиферативную реакцию лимфоцитов in vitro. Смешанная лимфоцитарная реакция (MLR) оценивается по уровню пролиферации в смешанной культуре лимфоцитов (MLC) и может быть положительной даже при идентичности по антигенам HLA-A, HLA-B и HLA-C (63-3). Антигены HLA-D определяются с помощью стандартных стимулирующих лимфо­цитов, гомозиготных по HLA-D и инактивированных рентгеновскими лучами или митомицином С с целью придания реакции однонаправленности. Существует 19 таких антигенов (HLA-Dwl-19), обнаруженных с использованием гомозигот­ных типирующих клеток.

Попытки определения HLA-D серологическими методами сначала позволили обнаружить серию D-связанных (DR) антигенов, экспрессированных на молеку­лах класса II В-лимфоцнтов, моноцитов и активированных Т-лимфоцитов. Затем были описаны и другие тесно сцепленные антигенные системы, которые получили различные наименования (MB, MT, DC, SB). Идентичность отдельных групп молекул класса II сейчас установлена, и гены соответствующих a - и b-цепей выделены и секвенированы. Генная карта класса II, представленная на 63-1, отражает минимальное число генов и молекулярных участков. Хотя молекула масса II может содержать DRaиз гаплотипа одного из родителей, a DRb- другого (транскомплементация), комбинаторика вне каждого из участков DP, DQ, DR редка, если вообще возможна. Молекулы DR и в определенной степени DQ могут служить стимулами для первичной MLR. Вторичная MLR определяется как тест с примированными лимфоцитами (PLT) и дает возможность получить результат через 24-36 ч вместо 6-7 дней для первичной реакции. Аллоантигены DP были открыты благодаря их способности вызывать стимуляцию PLT, хотя они не дают первичной MLR. Хотя В-лимфоциты и активированные Т-лимфоциты экспрессируют все три набора молекул класса II, антигены DQ не экспрессируются на 60-90% DP- и DR-позитивных моноцитов.

63-2. Схематическое изображение молекул кле­точной поверхности клас­сов I и II.

Молекулы класса I состоят из двух полипептидных це­пей. Тяжелая цепь с мол. массой 44 000 проходит сквозь плазматическую мем­брану; ее наружный участок состоит из трех доменов (a 1 , a 2 и a 3), формируемых дисульфидными связями. Легкая цепь с мол. массой 11500 (b 2 -микроглобулин, b2мю) кодируется хромосомой 15 и нековалентно связана с тяжелой цепью. Аминокис­лотная гомология между мо­лекулами I класса состав­ляет 80-85%, снижаясь до 50% в участках a 1 и a 2 , которые, вероятно, соответ­ствуют участкам аллоантигенного полиморфизма. Мо­лекулы класса II образова­ны двумя нековалентно связанными полипсптидными цепями, a-цепь с мол. массой 34000 и b-цепь с мол массой 29000. Каждая цепь содержит два домена, сформиро­ванных дисульфидными связями (из С. Б. Carpenter, E. L. Milford, Renal Transplantation: Immunobiology in the Kidnev/Eds. B. Brenner, F. Rector, New York: Samiders, 1985).

63-3. HLA-зона хромосомы 6: наследование HLA-гаплотипов. Каждый хромосомный сегмент сцепленных генов обозначается как гаплотип, и каждый индивид наследует по одному гаплотипу от каждого родителя. На диаграмме пред­ставлены антигены А, В и С гаплотипов а и b для данного гипотетического индивида; ниже раскрыты обозначения гаплотипов в соответствии с текстом. Если мужчина с гаплотипом ab женится на жен­щине с гаплотипом cd, потомки могут быть только четырех ти­пов (с точки зрения HLA). Если в мейозе у одного из родителей происходит рекомби­нация (отмечена прерывистыми линиями), то это приводит к формированию измененного гап-лотнпа. Частота измененных гап­лотипов у детей служит мерой расстояний на генетической кар­ге (1% частота рекомбина­ций== 1 сМ; 63-1) (из Г.. В. Carpenter. Kidney Inter­national, Г)78. 14. 283).

Молекулярная генетика. Каждая полипептидная цепь молекул классов I и II содержит несколько полиморфных участков в дополнение к «част­ной» антигенной детерминанте, определяемой с помощью антисывороток. В тесте клеточно-опосредованного лимфолиза (CML) определяется специфичность киллерных Т-клеток (Тк), которые возникают в процессе пролиферации при MLR, путем тестирования на клетках-мишенях от доноров, не служивших источником стимулирующих клеток для MLR. Антигенные системы, определяемые этим мето­дом, обнаруживают тесную, но неполную корреляцию с «частными» антигенами класса 1. Клонирование циготоксических клеток позволило обнаружить набор полиморфных детерминант-мишеней на молекулах HLA, некоторые из которых невозможно выявить с помощью аллоантисывороток и моноклональных антител, полученных иммунизацией мышей человеческими клетками. Некоторые из этих реагентов могут быть использованы для идентификации «частных» детерминант HLA, в то время как другие направлены к более «общим» (иногда называемым супертипируемыми) детерминантам. Одна такая система «общих» HLA-B антиге­нов имеет два аллеля, Bw4 и Bw6. Большинство «частных» HLA-B связаны или с Bw4, или с Bw6. Другие системы сопряжены с подгруппами HLA антигенов. Например, HLA-B-позитивные тяжелые цепи содержат дополнительные участки, общие для В7, В27, Bw22 и В40 или для В5, В15, В18 и Bw35. Существуют и другие типы перекрывающихся антигенных детерминант, о чем свидетельствует реакция моноклональных антител с участком, общим для тяжелых цепей HLA-A и HLA-B. Изучение аминокислотной последовательности и псптидных карт не­которых молекул HLA показало, что гипервариабельные участки антигенов клас­са I сосредоточены в наружном a 1 -домене (63-2) и прилегающем участке a 2 -домена. Вариабельные последовательности молекул класса II различны для разных локусов. Замечательно, что a 3 -домен класса I, a 2 -домен класса II и b 2 -домен, а также часть мембранной молекулы Т8 (Leu 2), участвующей в межкле­точных взаимодействиях (гл. 62), обнаруживают значительную гомологию последовательности аминокислот с константными зонами иммуноглобулинов. Это подтверждает гипотезу об эволюционном формировании семейства генных продуктов, которые несут функции иммунологичсского распознавания. При иссле­довании геномной ДНК HLA для молекул классов I и II были обнаружены типич­ные экзон-интронные последовательности, причем экзоны были идентифицированы для сигнальных пептидов (5) каждого из доменов, трансмембранного гидро­фобного сегмента и цитоплазматического сегмента (З). Имеются пробы кДНК для большинства цепей HLA, а применение ферментативных гидролизатов для оценки состояния полиморфизма рестрикционных фрагментов по длине (ПДРФ), позволило получить данные, которые коррелируют с результатами изучения молекул класса 11 серологическими методами в MLR. Однако многочисленность (20-30) генов класса 1 делает оценку полиморфизма по ПДРФ затруднитель­ной. Многие из этих генов не экспрессируются (псевдогены), хотя некоторые могут соответствовать дополнительным локусам класса I, которые экспрессируют­ся только на активированных Т-клетках; функции их неизвестны. Разработка специфических проб на локусы HLA-A и HLA-B поможет разобраться в этой достаточно сложной проблеме.

Комплемент (класс III). Структурные гены трех компонентов комплемента-С4, С2 и Bf-путствуют в зоне HLA-B-D (63-1). Это два локуса С4, кодирующие С4А и С4В, первоначально описанные как эритроцитарные антигены Rodgers и Chido соответственно. Эти антигены оказались в дей­ствительности абсорбированными из плазмы молекулами С4. Другие компоненты комплемента не имеют тесного сцепления с HLA. Между генами С2, Bf и С4 кроссинговера не описано. Все они кодируются участком между HLA-B и HLA-DR длиной около 100ко. Существуют два аллеля С2, четыре Bf, семь С4А и три С4В, кроме того, в каждом локусе имеются молчащие аллели QO. Исклю­чительная полиморфность гистотипов комплемента (комплотипы) делает эту систему пригодной для генетических исследований.

Таблица 63-1. Наиболее распространенные гаплотины HLA

В табл. 63-1 представлены четыре наиболее широко распространенных гаплотипа, обнаруженных у лиц западноевропейского происхождения. Результаты MLR у людей, не состоящих в родстве, отобранных по признаку совместимости по этим гаплотипам, отрицательны, в то же время реакция обычно имеет место, если неродственные индивиды подобраны только на совместимость по HLA-DR и DQ. Такие идентичные распространенные гаплотипы, возможно, в неизменном виде происходят от единого предка.

Другие гены 6-й хромосомы. Недостаточность стероид 21-гидроксилазы, аутосомно-рецессивный признак, вызывает синдром врожденной гипер­плазии надпочечников (гл. 325 и 333). Ген для этого фермента локализуется на участке HLA-B-D. Ген 21-гидроксилазы, прилегающий к гену С4А, делетирован у лиц, страдающих упомянутым синдромом, вместе с С4А (C4AQO), и ген HLA-B может трансформироваться с конверсией В 13 в редкий Bw47, обнаруживаемый только в измененных гаплотипах. В отличие от поздно проявляющегося дефици­та 21-гидроксилазы, сцепленного с HLA, врожденная гиперплазия надпочечников, связанная с дефицитом 21b-гидроксилазы, не сцеплена с HLA. В нескольких семейных исследованиях показано, что идиопатический гемохроматоз, аутосомно-рецессивное заболевание, сцеплено с HLA (гл. 310). Хотя патогенез рас­стройств всасывания железа в желудочно-кишечном тракте неизвестен, установ­лено, что гены, модулирующие этот процесс, находятся вблизи участка HLA-A.

Таблица 63-2. Сцепление генетических дефектов

Локализация

Обнаруживаемые

гаплотипы

Дефицит С2

Aw25, B18, BfS, DR2

Дефицит 21-ОН

A3, Bw47, BfF, DR7

Дефицит 21-ОН (позднее про­явление)

Идиопатический гемохроматоз

Болезнь Педжета

Спинно-мозжечковая атаксия

Болезнь Ходжкина

63-4. Схема относительной роли HLA-A, HLA-B, HLA-C и HLA-D анти­генов в инициации аллоиммунного ответа и в образовании эффекторных клеток и антител.

Два главных класса Т-лимфоцитов распознают антигены: Тк - предшественники цитотоксических «киллерных» клеток и Тх-хелперные клетки, способствующие развитию цитотоксического ответа. Тх также обеспечивают помощь В-лимфоцитам при развитии «зрелого» IgG-ответа. Важно отметить, что Тк обычно распознают антигены класса I, тогда как сигнал для Тх создает преимущественно HLA-D, который тесно связан с анти­генами класса II (из С. В. Carpenter.- Kidney International, 1978, 14, 283).

Гены иммунного ответа. При изучении in vitro ответа на синтети­ческие полипептидные антигены, гемоцианин, коллаген, столбнячный токсоид выявлено, что зона HLA-D аналогична региону Н-2. I у мыши. Презентация антигенных фрагментов на поверхности макрофагов или других клеток, несущих молекулы II класса, требует сопряженного распознавания комплекса «молекула II класса + антиген» Т-лимфоцитами, несущими соответствующий рецептор (ы) (гл. 62). Стержнем этой гипотезы «свое-)-Х» или «измененное свое» состоит в том, что Т-зависимый иммунный ответ, действие Т-хелперов/индукторов (Тх) осуществляется только в том случае, если будут синтезированы соответствующие детерминанты класса II. Гены последних и есть Ir-гены. Поскольку аллогенные детерминанты класса И распознаются как уже измененные, аллогенная MLP представляет собой модель иммунной системы, в которой путствие псевдоанти­гена необязательно (63-4). Эффекторные фазы иммунитета требуют распо­знавания псевдоантигена в комплексе с собственными структурами. Последние у человека, как и у мыши, представляют собой молекулы антигенов гистосовместимости I класса. Человеческие клеточные линии, инфицированные вирусом грип­па, лизируются иммунными цитотоксическими Т-лимфоцитами (Тк) только в том случае, если реагирующие клетки и клетки-мишени идентичны по локусам HLA-A и HLA-B. Аллогенная MLR служит моделью и для формирования цитотоксических Т-лимфоцитов, рестриктированных по классу I (63-4). Дета­ли рестрикции по различным молекулам классов I и II и эпитопам могут быть вычленены при использовании примированных клеток, подвергшихся размноже­нию и клонированию. Например, на уровне антигенпрезентирующих клеток дан­ный Тх-клон распознает антигенный фрагмент, комплексированный со специфи­ческим участком молекулы класса II, с помощью рецептора Ti. Рестриктирующими элементами.для некоторых микробных антигенов являются аллели DR и Dw.

Супрессия иммунного ответа (или, низкий уровень отвечаемости) к пыльце кедра, антигенам стрептококков и шистосом доминантна и сцеплена с HLA, что свиде­тельствует о существовании генов иммунной супрессии (Is). Показано также наличие специфических аллельных ассоциаций HLA с уровнем иммунного ответа, например, для антигена клещевины Ra5 - с DR2 и для коллагена - с DR4.

Ассоциации с болезнями. Если главный комплекс гистосовместимости вы­полняет важную биологическую функцию, то какова эта функция? Одна из гипо­тез состоит в том что он играет роль в иммунном надзоре за неопластическими клетками, появляющимися в течение жизни индивида. Велико значение этой системы при беременности, поскольку между матерью и плодом всегда существует тканевая несовместимость. Высокая степень полиморфизма может также способ­ствовать выживаемости видов в противостоянии огромному числу микробных агентов путствующих в окружающей среде. Толерантность к «своему» (аутотолерантность) может перекрестие распространяться на микробные антигены, следствием которой будет высокая восприимчивость, приводящая к возникнове­нию смертельных инфекций, в то время как полиморфизм по системе HLA спо­собствует тому что часть популяции распознает опасные агенты как чужеродные и включает адекватную ответную реакцию. Эти гипотезы связывают роль HLA с преимуществами, благодаря которым система выживает в условиях давления отбора Каждая из этих гипотез имеет определенные подтверждения.

Важным свидетельством роли комплекса HLA в иммунобиологии послужило обнаружение положительной ассоциации некоторых патологических процессов с антигенами HLA. Изучение этих ассоциаций было стимулировано открытием генов иммунного ответа, сцепленных с Н-2-комплексом, у мышеи. В табл. 63-3 суммированы наиболее значимые ассоциации HLA и болезней.

Установлено что частота встречаемости HLA-B27 повышается при некоторых ревматических заболеваниях, особенно при анкилозирующем спондилите, заболе­вании явно семейного характера. Антиген В27 имеется лишь у 7% лиц западно­европейского происхождения, но его обнаруживают у 80-90% больных анкило­зирующим спондилитом. В пересчете на относительный к это означает, что этот антиген ответствен за восприимчивость к развитию анкилозирующего спон­дилита, которая в 87 раз выше у его носителей, чем в общей популяции. Анало­гично показана высокая степень ассоциации с антигеном В27 острого переднего увеита, синдрома Рейтера и реактивных артритов по крайней мере при трех бактериальных инфекциях (иерсиниозе, сальмонеллезе и гонорее). Хотя обычная форма ювенильного ревматоидного артрита также ассоциирована с В27, тип забо­левания со слабо выраженным суставным синдромом и иритом связан с В27. При псориатическом артрите центрального типа чаще встречается В27, тогда как Bw38 ассоциирован как с центральным, так и с периферическим типами. Псориаз ассоциирован с Cw6. У больных с дегенеративным артритом или подаг­рой не обнаруживается каких-либо изменений в частоте встречаемости антигенов.

Большинство других ассоциаций с болезнями свойственно антигенам HLA-D-зоны Например, глютенчувствительная энтеропатия у детей и взрослых ассо­циирована с антигеном DR3 (относительный к 21) Действительный процент больных с данным антигеном варьирует от 63 до 96% в сравнении с 22-27% в контроле. Тот же антиген чаще обнаруживается у больных с активным хрони­ческим гепатитом и герпетиформным дерматитом, страдающих в то же время и глютенчувствительной энтеропатией. Ювенильный инсулинзависимыи сахарный диабет (тип I) ассоциирован с DR3 и DR4 и отрицательно ассоциирован с DR2 У 17-25% больных диабетом I типа обнаружен редкий аллель Bf (М). Диабет с началом во взрослом периоде жизни (типа II) не имеет ассоциации с HLA. Гипертиреоидизм в США ассоциирован с В8 и Dw3, в то время как в японской популяции - с Bw35. Более широкое обследование здоровых и больных предста­вителей различных рас поможет прояснить вопрос об универсальных HLA-маркерах. Например, антиген В27, редкий у здоровых лиц японской национальности, обычен у больных с анкилозирующим спондилитом. Точно так же DR4 - маркер тля диабетаI типа у представителей всех рас. Иногда HLA-маркер явно ассо­циирован только с частью симптомов внутри синдрома. Например, миастения зна­чительно сильнее ассоциирована с антигенами В8 и DR3 у больных без тимомы, а рассеянный склероз - с антигеном DR2 у лиц с быстро прогрессирующим течением болезни. Синдром Гудпасчера, связанный с аутоиммунным поражением клубочковых базальных мембран, идиопатический мембранозный гломерулонефрит, отражающий аутоиммунные процессы с образованием антител к антиге­нам клубочков, а также мембранозный нефрит, индуцированный золотом, в зна­чительной степени ассоциированы с HLA-DR.

Таблица 63-3. Заболевания, ассоциированные с HLA-антигенами

Заболевания

Относительный к

Ревматоидные

Анкилозирующий спондилит

Синдром Рейтера

Острый передний увеит

Реактивный артрит (Yersinia, Salmonella, Gonococcus)

Псориатический артрит (центральный)

Псориатический артрит (периферический)

Ювенильный ревматоидный артрит

Ювенильный артрит со слабо выраженным суставным синдромом

Ревматоидный артрит

Синдром Шегрена

Системная красная волчанка

Системная красная волчанка (в результате

приема апрессина)

Желудочно-кишечные

Глютенчувствительная энтеропатия

Хронический активный гепатит

Язвенный колит

Гематологические

Идиопатический гемохроматоз

Пернициозная анемия

Герпетиформный дерматит

Псориаз вульгарный

Псориаз вульгарный (в японской популяции)

Пузырчатка вульгарная (в европейской попу ляции)

Болезнь Бехчета

Эндокринные

Сахарный диабет I типа

Гипертиреоидизм

Гинертиреоидизм (в японской популяции)

Заболевания

Наиболее тесно ассоциированные антигены

Относительный к

Недостаточность надпочечников

Подострый тиреоидит (de Quervain)

Тиреоидит Хашимото

Н еврологические

Миастения

Рассеянный склероз

Маниакально-депрессивное расстройство

Шизофрения

Почечные

Идиопатический мембранозный гломеруло-

Болезнь Гудпасчера (анти-GMB)

Болезнь минимальных изменений (стероидный

Полицистозная болезнь почек

IgA-нефропатия

Нефропатия, вызванная золотом

Инфекционные

Туберкулоидная лепра (в азиатской попу­

Полнопаралич

Низкий ответ на вирус вакцины

Иммунодефицитные

Дефицит IgA (доноры крови)

Неравновесное сцепление. Хотя распределение аллелей HLA варьирует в расовых и этнических популяциях, наиболее характерную особенность популяционной генетики антигенов HLA представляет наличие неравновесного сцепле­ния для некоторых антигенов А и В, В и С, В, D и локусов комплемента. Неравно­весность сцепления означает, что антигены тесно сцепленных локусов оказывают­ся вместе чаще, чем следует из предположения о случайной ассоциации. Класси­ческим примером неравновесного сцепления является связь антигена локуса AHLA-A1 с антигеном локуса В HLA-B8 у лиц западноевропейского происхож­дения. Одновременное наличие А1 и В8, рассчитанное на основе частот их генов, должно наблюдаться с частотой 0,17. 0,11, т. е. примерно 0,02. Тогда как на­блюдаемая частота их сосуществования составляет 0,08, т. е. в 4 раза больше, чем ожидаемая, и разность между этими величинами составляет 0,06. Последняя величина обозначается дельта (D) и служит мерой неравновесности. Обнаружено неравновесное сцепление и других гаплотипов А- и В-локусов: A3 и В7, А2 и В 12, А29 и В 12, A11 и Bw35, Для некоторых детерминант D-зоны описано нерав­новесное сцепление с антигенами В-локуса (например, DR3 и В8); а также для антигенов В- и С-локусов. Серологически выявляемые антигены HLA служат маркерами для генов целого гаплотипа внутри семейства и маркерами специ­фических генов в популяции, но только при наличии неравновесного сцепления.

Значение неравновесного сцепления велико, поскольку такие генные ассоциа­ции могут порождать определенные функции. Давление отбора в процессе эволю­ции может быть основным фактором в сохранении некоторых генных комбинаций в генотипах. Так, например, существует теория, согласно которой А1 и В8, а также некоторые детерминанты D и других регионов обеспечивают селективное преимущество перед лицом эпидемий таких болезней, как чума или оспа. Однако возможно также, что потомки людей, выживших во время подобных эпидемий, сохраняют восприимчивость к иным болезням, поскольку их уникальный генный комплекс не обеспечивает адекватный ответ на другие факторы окружающей среды. Главная трудность этой гипотезы состоит в допущении, что отбор действу­ет на несколько генов одновременно и обеспечивает тем самым возникновение наблюдаемых значений Л, однако потребность в сложных взаимодействиях между продуктами разных локусов МНС-комплекса - лишь начальное звено для на­блюдаемых явлений и селекция может усилить множественное неравновесное сцепление. Сохранение некоторых распространенных гаплотипов, названных вы­ше, поддерживает этот взгляд.

С другой стороны, гипотеза отбора необязательно должна объяснять нерав­новесное сцепление. Когда популяция, лишенная некоторых антигенов, скрещи­вается с другой, для которой характерна высокая частота этих антигенов, нахо­дящихся в равновесии, Dможет проявиться через несколько поколений. Напри­мер, нарастание Dдля А1 и В8, обнаруженное в популяциях в направлении с востока на запад, от Индии к Западной Европе, может быть объяснено на основе миграции и ассимиляции населения. В малых группах неравновесность может быть обусловлена совместимостью, эффектом основателей и дрейфом генов. Наконец, некоторые случаи неравновесного сцепления являются результатом неслучайного кроссинговера во время мейоза, так как хромосомные сегменты могут быть в большей или меньшей степени ломкими. Будь то давление отбора или ограничения кроссинговера, неравновесность сцепления может исчезать в течение нескольких поколений. Большое число неслучайных ассоциаций имеется в HLA-генном комплексе и определение их причин может обеспечить проникнове­ние в механизмы, лежащие в основе чувствительности к болезням.

Сцепление и ассоциации. В табл. 63-2 перечислены болезни, служащие приме­ром сцепления с HLA, когда наследственные признаки маркируются в пределах се­мьи соответствующими гаплотипами. Например, дефицит С2, 21-гидроксилазы, идиопатический гемохроматоз наследуются по рецессивному типу с наличием часгичного дефицита у гетерозигот. Эти генетические нарушения также являются HLA-ассоциированными и обусловливаются избытком некоторых HLA-аллелей у боль­ных людей, не состоящих в родстве. Дефицит С2 обычно сцеплен с гаплотипами HLA-Aw 25, В 18, В55, D/DR2, а при идиопатическом гемохроматозе проявляется как сцепление, так и сильная ассоциация между HLA-A3 и В 14. Высокая степень неравновесного сцепления в этом случае вызвана мутациями у лица, послужившего его источником; кроме того, недостаточен был период времени, необходимый для возвращения пула генов в состояние равновесия. С этой точки зрения HLA-гены - простые маркеры сцепленных генов. С другой стороны, для проявления конкретного нарушения может требоваться взаимодействие со специфическими HLA-аллелями. Последняя гипотеза потребовала бы признания более высокого темпа мутаций с экспрессией дефектных генов, что происходит только при условии сцепления с не­которыми HLA-генами.

Болезнь Педжета и спинно-мозжечковая атаксия являются HLA-сцепленными аутосомно-доминантными наследственными заболеваниями; они обнаруживаются сразу у нескольких членов семьи. Болезнь Ходжкина служит проявлением HLA-сцепленного рецессивного наследственного дефекта. Никаких HLA-ассоциаций не было обнаружено при этих заболеваниях, что свидетельствует в пользу исходной множественности «основоположников» этих болезней с мутациями, связанными с различными аллелями HLA.

Сцепление с HLA без труда определяется, когда доминантность и рецессив­ность признаков легко разграничить, т. е. когда высока экспрессивность и процесс детерминируется дефектом единичных генов. При большинстве ассоциаций HLA-маркеры отражают факторы ка, вовлекаемые в реализацию и модуляцию иммун­ного ответа под влиянием множественных генов. Примером полигенного иммунного заболевания является атоническая аллергия, при которой ассоциация с HLA может быть очевидной только у лиц с низким генетически контролируемым (не в связи с HLA) уровнем продукции IgE. Другой пример такого рода - дефицит IgA (табл. 63-3), ассоциированный с HLA-DR3.

Клиническое значение системы HLA. Клиническое значение типирования HLA для диагностики ограничивается определением В27 при диагностике анкилозирую­щего спондилита; тем не менее и в этом случае наблюдается 10% ложноположи­тельных и ложноотрицательных результатов. Изучение HLA имеет ценность также в практике генетических консультаций для раннего определения болезней в семьях с идиопатическим гемохроматозом, врожденной гиперплазией надпочечников, связанной с дефицитом стероидгидроксилазы, в особенности если HLA-типирование осуществляется на клетках, полученных амниоцентезом. Высокая степень полиморфизма в системе HLA делает ее ценным инструментом для тестирования различных клеточных препаратов, в особенности в судебно-медицинской практике. Некоторые болезни, такие как сахарный диабет I типа и другие, для которых пока­заны HLA-ассоциации, требуют дополнительного изучения роли компонентов системы HLA в патогенезе этих заболеваний.

Оглавление темы "Факторы неспецифической резистентности организма. Интерферон (ифн). Иммунная система. Клетки иммунной системы.":









Иммунная система. Индуцибельные факторы защиты организма (иммунная система). Главный комплекс гистосовместимости (МНС первого и второго класса). Гены MHC I и MHC II.

Иммунная система - совокупность органов, тканей и клеток, обеспечивающих структурное и генетическое постоянство клеток организма; образует вторую линию защиты организма. Функции первого барьера на пути чужеродных агентов выполняют кожа и слизистые оболочки, жирные кислоты (входящие в состав секрета сальных желёз кожи) и высокая кислотность желудочного сока, нормальная микрофлора организма, а также клетки, выполняющие функции неспецифической защиты от инфекционных агентов.

Иммунная система способна распознавать миллионы разнообразных веществ, выявлять тонкие различия даже между близкими по структуре молекулами. Оптимальное функционирование системы обеспечивают тонкие механизмы взаимодействия лимфоидных клеток и макрофагов, осуществляемые при прямых контактах и с участием растворимых посредников (медиаторов иммунной системы). Система обладает иммунной памятью , сохраняя информацию о предыдущих антигенных воздействиях. Принципы поддержания структурного постоянства организма («антигенной чистоты») основаны на распознавании «своего-чужого».

Для этого на поверхности клеток организма имеются гликопротеиновые рецепторы (Аг), составляющие главный комплекс гистосовместимости - МНС [от англ. major histocompatibility complex ]. При нарушении структуры этих Аг, то есть изменении «своего» иммунная система расценивает их как «чужое».

Спектр молекул МНС уникален для каждого организма и определяет его биологическую индивидуальность; это и позволяет отличать «своё» (гистосовместимое ) от «чужого» (несовместимого). Выделяют гены и Аг двух основных классов МНС .

Главный комплекс гистосовместимости (МНС первого и второго класса). Гены MHC I и MHC II.

Молекулы I и II классов контролируют иммунный ответ. Они сочетанно распознаются поверхностными дифференцировочными CD-Ar клеток-мишеней и участвуют в реакциях клеточной цитотоксичности, осуществляемой цитотоксическими Т-лимфоцитами (ЦТЛ).

Гены MHC I класса определяют тканевые Аг; Аг класса МНС I представлены на поверхности всех ядросодержащих клеток.

Гены MHC II класса контролируют ответ к тимусзависимым Аг; Аг класса II экспрессируются преимущественно на мембранах иммунокомпетентных клеток, включая макрофаги, моноциты, В-лимфоциты и активированные Т-клетки.

При первой пересадке сердца человека, сделанной в 1967 г. К. Барнардом, и сотнях последующих хирурги столкнулись с проблемой отторжения трансплантата. Оказалось, что главная трудность заключается не в технике операции, которая сейчас разработана достаточно хорошо, а в несовместимости тканей, обусловленной иммунологическими механизмами. Так, у челове­ка выживание трансплантатов реципиентов, взятых от случайно­го донора, составляет 10,5 дня, тогда как трансплантаты, обме­ненные между однояйцовыми близнецами (изотрансплантаты), приживаются. Это происходит благодаря наличию на поверхнос­ти клеток антигенов, называемых трансплантационными антиге­нами или антигенами гистосовместимости. Большинство транс­плантационных антигенов расположены на лейкоцитах, но они имеются и на всех других ядросодержащих клетках (клетках кожи, легких, печени, почек, кишечника, сердца и т. д.). Гены, кодирующие эти антигены, называются генами тканевой совмес­тимости. Система генов, контролирующая трансплантационные антигены лейкоцитов, названа главным комплексом гистосов­местимости (англ. Major Histocompatibility complex - МНС). Гены гистосовместимости кодоминантны.

Эффективность трансплантации зависит не только от лейко­цитарных и эритроцитарных антигенов, но и от минорной систе­мы гистосовместимости. Трансплантаты между монозиготными близнецами приживаются. Однако у братьев и сестер при совпа­дении по МНС-гаплотипам, но несовпадении по минорным сис­темам гистосовместимости происходит отторжение транспланта­тов кожи.

После иммуноглобулинов и рецепторов Т-клеток белки глав­ного комплекса гистосовместимости самые разнообразные из всех белков. Различают два класса белков МНС. Белки класса I находятся на поверхности почти всех клеток. Молекула белка состоит из двух полипептидных цепей: большой и малой. Белки


МНС класса II имеются на поверхности некоторых клеток (В-" лимфоциты, макрофаги, специализированные эпителиальные., клетки), а их молекула состоит из примерно равных полипептид-* ных цепей. Белки МНС имеют некоторое сходство с иммуногло­булинами. Основная роль белков МНС состоит не в отторжении чужой ткани, а в направлении реакции Т-клеток на антиген. Цитотоксические Т-клетки могут узнавать антиген, если он расположен вместе с белками МНС класса I на поверхности одной клетки. Т-хелперы узнают антиген в комбинации с белками МНС класса П. Такое двойное стимулирование называется МНС-о граничением. Впервые главную систему тканевой совместимости мыши Н-2 открыл П. Горер в 1936 г. Кроме Н-2 найдено много локусов тканевой совместимости, расположенных во всех хромосомах.

В 1980 г. Д. Снелл, Ж. Доссе и Б. Бенацерафф получили Но­белевскую премию за «различные аспекты исследования, привед­шего к современному пониманию системы генов гистосовмести­мости человека». Д. Снелл сформулировал основные генетичес­кие законы совместимости тканей и получил данные о тонком строении локуса Н-2 у мышей.

Система Н-2 довольно хорошо изучена, поэтому она служит хорошей моделью для исследования МНС у других видов живот­ных. Комплекс Н-2 включает несколько тесно сцепленных локу­сов длиной 0,35 сМ, расположенных в 17-й хромосоме. Ком­плекс Н-2 разделен на пять областей: К, I, S, G, D (рис. 56).

Для реализации корректного иммунного ответа необходимо отличать «свое» от «чужого». Это свойство связано с системой генов, которые детерминируют синтез специфических для каждого организма молекул. Такие молекулы были открыты в конце 50-х годов прошлого века французским исследователем Жаном Доссе благодаря их способности вызывать реакцию отторжения трансплантата при пересадке ткани в пределах одного вида животных. Поэтому они были на-званы антигенами гистосовместимости, или трансплантационными антигенами. Поскольку у человека такие молекулы были впервые выявлены на лейкоцитах крови , система человеческих антигенов гистосовместимости получила название лейкоцитарных антигенов человека (Human Leukocyte Antigens), сокращенно — HLA. Соответствующий участок на 6-й хромосоме, где расположены гены, ко-дирующие антигены гистосовместимости, называется HLA-комплексом. У всех млекопитающих главный комплекс гистосовместимости называется MHC (англ. — Major Histocompatibility Complex).

Различают три класса генов главного комплекса гистосовместимости (рис. 25). Антигены HLA I и II классов отличаются по структуре., но в дальнейшем имеют разную судьбу.

I класс HLA

I класс включает локусы А, В, С, Е, О, F. Локусы А, В и С называются «клас-сическими», поскольку кодируют хорошо изученные антигены гистосовместимости. Классические антигены I класса размещены на поверхности всех клеток организма, кроме нитей трофобласта. Именно они свидетельствуют об организменной принадлежности клеток. Для генов I класса присущ огромный поли-морфизм. Так, локус А содержит 40 аллелей, В — 60 аллелей, а С — около 20. С этим связана беспрецедентная уникальность набора HLA у каждого человека.

Роль антигенов I класса, которые кодируются локусами Е, G и F, полностью не изучена. Известно, что на клетках трофобласта присутствуют молекулы, ко-дируемые только локусом G. Это считается одним из механизмов поддержания иммунной толерантности организма матери к антигенам фетоплацентарного комплекса.

Структура

Молекулы 1 класса состоят из одной тяжелой пели, которая содержит 3 до-мена, и одной легкой, образованной лишь одним доменом. При этом только тяжелая цепь имеет цитоплазматический участок и формирует пептидсвязывающую бороздку.

Синтез

Молекулы HLA I класса синтезируются на гранулярном эндоплазма-тическом ретикулуме.

HLA 1 поступа-ют в протеосомы, где пептиды, сформированные за счет деятельности LMP, загружаются в их пептидсвязывающую борозду молекулами-транспортерами (ТАР). После этого комплекс HLA-пептид по внутриклеточным коммуника-циям поступает в комплекс Гольджи и в везикулах, которые отшнуровываются от этой органеллы, перемещается в сторону внешней плазматической мемб-раны. Содержимое везикулы высвобождается наружу (экзоцитоз), а фрагмент мембраны, в который встроены новообразованные HLA I, входит в состав цитолеммы. Следует отметить, что пептиды для молекул гистосовместимости I класса всегда есть в наличии, поскольку формируются они из аутоантигенов, часть которых расщепляется LMP еще до начала выполнения своих функцио-нальных обязанностей в клетке.

II класс HLA

II класс содержит «классические» локусы DR, DQ, DP, кодирующие синтез соответствующих по названию молекул. Обычно антигены II класса находят-ся только на мембранах профессиональных антигенпрезентирующих клеток, к которым принадлежат дендритные клетки , макрофаги и В-лимфоциты. Но под влиянием интерлейкина-2 и γ-интерферона они могут дополнительно по-являться и на других клетках (в частности, на Т-лимфоцит ах и клетках эндотелия сосудов). Антигены II класса также довольно полиморфны, особенно кодируемые локусом DR. Кроме перечисленных «классических» локусов, ге-ны II класса включают еще 3 других — LMP (Large multifunctional proteasa, большая многофункциональная протеаза), ТАР (Transporter for antigen presentation, транспортер для антигенной презентации; и локус DM. Локусы LMP кодируют протеазы, осуществляющие «разрезание» макромолекулы антигена и опреде-ляющие тем самым размер образованных иммуногенных пептидов. Локус ТАР обеспечивает синтез транспортных белков, которые осуществляют доставку и «загрузку» таких иммуногенных пептидов в пептидсвязывающую бороздку молекулы HLA (в так называемый карман Беркмана). Интересно, что оба гена обслуживают синтез молекул HLA 1 класса. Локус DM кодирует синтез бел-ков, катализирующих замену «временного пептида» на специфический пептид, загружаемый в пептидсвязывающую бороздку HLA II класса в случае захвата антигенпрезентирующей клеткой антигена.

Структура

HLA II класса формируют две одинаковые по молекулярной массе цепи, каждая из которых имеет контакт с цитоплазмой и принимает учас-тие в формировании общей пептидсвязывающей борозды.

Синтез

Молекулы HLA II класса синтезируются на гранулярном эндоплазма-тическом ретикулуме.

Молекулы HLA II синтезируются в комплексе с так называемой инвариант-ной цепью, которая образует «временный пептид» (без пептида любая молеку-ла гистосовместимости нежизнеспособна). В дальнейшем образованный ком-плекс поступает в лизосомы, где разрушается гидролитическими ферментами, а сформированные мономеры используются для повторного синтеза HLA II. Так происходит до тех пор, пока антигенпрезентирующая клетка (АПК) не за-хватит антиген. В таком случае образуется фаголизосома и именно сюда пос-тупает комплекс HLA II — временный пептид. Под влиянием активированных белков DM временный пептид оставляет молекулу гистосовместимости, а на его место загружается иммуногенный пептид, образованный путем процес-синга захваченного антигена. В дальнейшем фрагменты разрушенного антиге-на удаляются из клетки путем экзоцитоза. При этом мембрана экзоцитарной вакуоли, в которую встроены комплексы HLA II — иммуногенный пептид, сливается с цитолеммой и указанные комплексы оказываются на поверхности клетки. В таком состоянии АПК готова к осуществлению антигенной презен-тации. Материал с сайта

Описанные постоянное разрушение и ресинтез молекул HLA II класса про-исходят в дендритных клетках. Хотя последние тратят энергию на, казалось бы, бессмысленную рециркуляцию HLA, они в любой момент времени пребывают в полной готовности к презентации антигена . Учитывая это, дендритные клет-ки можно сравнить с автомобилем с включенным мотором — следует лишь нажать на газ и он сразу же тронется. Макрофаги, в отличие от дендритных клеток, начинают синтез HLA II только после фагоцитоза объекта, поэто-му они более медленно включаются в процесс антигенной презентации. Сэкономленную энергию макрофаг использует для синтеза целого ряда белков, необходимых для выполнения эффекторных функций. Напомним, что макро-фаги совмещают функции антигенпрезентирующей клетки, фагоцита и клет-ки-эффектора в реакциях антителозависимой клеточно-опосредованной цито-токсичности.