Характеристики и параметры полевого транзистора — схемы включения, ВАХ. Полевые транзисторы. Виды и устройство. Применение и особенности Полевые транзисторы p типа

  • 8. Приборы электродинамической и ферродинамической систем. Однофазный индукционный счетчик электрической цепи.
  • 9. Расчет цепей постоянного тока при последовательном и параллельном соединении пассивных приемников.
  • 10. Приборы магнитоэлектрической и электромагнитной схем. Магнитоэлектрическая система
  • Прибор магнитоэлектрической системы
  • Достоинства магнитоэлектрической системы
  • Недостатки магнитоэлектрической системы
  • Электромагнитная система
  • Прибор электромагнитной системы
  • Достоинства электромагнитной системы
  • Недостатки электромагнитной системы
  • 11. Электрические цепи переменного тока, принципы получения переменной эдс.
  • 12. Электрические измерения и приборы. Основные определения и термины. Методы измерений. Классификация средств измерений.
  • 13. Действующие и среднее значения токов и напряжений в цепях переменного тока.
  • 14. Цифро-аналоговые и аналогово-цифровые преобразователи.
  • 15. Законы Ома и Кирхгофа для мгновенных значений токов и напряжений в цепях переменного тока.
  • 16. Регистры, кольцевые счетчики. Счетчики с двоичным и недвоичным коэффициентами пересчета.
  • 17. Расчет цепей переменного тока методом векторных диаграмм.
  • 18. Последовательные цифровые устройства. Триггеры и их разновидности.
  • 19. Расчет последовательных цепей переменного тока методом векторных диаграмм.
  • 20. Комбинационные цифровые устройства. Мультиплексоры, демультиплексоры, дешифраторы, сумматоры.
  • 21. Расчет параллельных цепей переменного тока методом векторных диаграмм.
  • 22. Основные типы цифровых интегральных схем. Параметры цифровых ис.
  • 23. Комплексный метод расчета параметров электрических цепей переменного тока.
  • 24. Представление информации в цифровой форме. Составление логических функций и функциональных схем.
  • 25. Явление резонанса в цепях переменного тока.
  • 26. Транзисторные ключи на биполярных и полевых транзисторах. Аналоговые коммутаторы.
  • 27. Трехфазные цепи переменного тока. Соединение приемников звездой и треугольником. Основные определения
  • 2. Соединение в звезду. Схема, определения
  • 3. Соединение в треугольник. Схема, определения
  • 28. Импульсный режим работы электронных устройств. Генераторы импульса.
  • 29. Нелинейные элементы электрических цепей и их характеристики. Графический метод расчета нелинейных цепей постоянного тока.
  • 30. Генераторы гармонических колебаний.
  • 2. Генератор lc-типа
  • 31. Политический метод расчета нелинейных цепей.
  • 32. Линейные преобразователи электрических сигналов на основе операционных усилителей
  • 33. Магнитные цепи. Основные понятия и определения. Магнитный поток, индукция, напряженность. Магнитная проницаемость. Явление магнитного гистерезиса в веществе.
  • 34. Методы расчета транзисторных усилителей.
  • 35. Прямая и обратная задачи в расчетах магнитных цепей.
  • 36. Усилители на транзисторах. Стабилизация начальной рабочей точки.
  • 37. Уравнения Кирхгофа для магнитной цепи.
  • 38. Классификация, основные параметры и характеристики усилителей. Обратная связь в усилителях.
  • 39. Электромагнитные устройства. Принцип работы и основные аналитические соотношения для электромагнитов и электромагнитных реле.
  • 41. Устройство и принцип работы трансформатора, его векторная диаграмма
  • Устройство и принцип работы
  • 43. Режим холостого хода трансформатора и его работа под нагрузкой.
  • 45. Устройство и принцип действия генератора постоянного тока эдс и электромагнитный момент. Способы возбуждения генераторов постоянного тока.
  • 46. Операционные усилители, эквивалентная схема, основные характеристики и уравнения, интегральные микросхемы.
  • 47. Двигатели постоянного тока. Регулирование скорости двигателей постоянного тока.
  • 48. Основные свойтва, характеристики и типы тиринисторов. Динисторы и тринисторы.
  • 49. Устройство и принцип работы асинхронного двигателя. Его характеристики.
  • 50. Основные свойства, характеристики и типы полевых транзисторов.
  • 51. Пуск и реверсирование асинхронных двигателей. Регулирование частоты вращения.
  • 52. Устройство и принцип работы синхронного генератора. Его характеристики.
  • 54. Основные свойства, характеристики и типы полупроводниковых диодов. Расчет электронных схем с диодами.
  • 4.1.1. Выпрямление в диоде
  • 4.1.2. Характеристическое сопротивление
  • 4.1.4. Эквивалентная схема диода
  • 55. Работа синхронной машины в режиме двигателя. Рабочие характеристики синхронного двигателя.
  • 56.Краткие сведения о структуре полупроводников, электрические переходы в полупроводниках.
  • Свойства полупроводников.
  • Строение атомов полупроводников.
  • Электропроводность полупроводника.
  • Электронно-дырочная проводимость.
  • Электронная проводимость.
  • Дырочная проводимость.
  • 50. Основные свойства, характеристики и типы полевых транзисторов.

    Полевым транзистором называется полупроводниковый прибор, в котором ток создаётся только основными носителями зарядов под действием продольного электрического поля, а управление этим током осуществляется поперечным электрическим полем, которое создаётся напряжением, приложенным к управляющему электроду (рис. 2.1).

    Рис. 2.1. Устройство полевого транзистора: а – с n-каналом; б – с p-каналом

    Поэтому полевые транзисторы подразделяются на транзисторы с каналом р-типа или n-типа. Условное графическое изображение полевого транзистора приведено на рис. 2.2, с каналом n-типа и р-типа соответственно.

    Следовательно можно сделать вывод, что полевой транзистор представляет собой управляемый полупроводниковый прибор, так как, изменяя напряжение на затворе, можно уменьшать ток стока, и поэтому принято говорить, что полевые транзисторы с управляющими р-n переходами работают только в режиме обеднения канала.

    2.2. Характеристики и параметры полевых транзисторов

    К основным характеристикам полевых транзисторов относятся:

    · стокозатворная характеристика – это зависимость тока стока I С от напряжения на затворе U ЗИ (рис. 2.4, а );

    · стоковая характеристика – это зависимость I С от U СИ при постоянном напряжении на затворе (рис. 2.4, б )

    I С = f (U СИ), при U ЗИ = const.

    Рис. 2.4. Характеристики полевых транзисторов с управляющим p-n переходом:а – стокозатворная (входная); б – стоковая (выходная)

    Основные параметры полевых транзисторов:

    · напряжение отсечки;

    · крутизна стокозатворной характеристики. Она показывает, на сколько миллиампер изменится ток стока при изменении напряжения на затворе на 1 В (рис. 2.4, а )

    QUOTE S=∆Ic∆U зи , при U СИ = const,

    ;

    · внутреннее (или выходное) сопротивление полевого транзистора (рис. 2.4, б )

    При U ЗИ = const;

    · входное сопротивление

    .

    Так как на затвор подаётся только запирающее напряжение, то ток затвора будет представлять собой обратный ток закрытого p-n перехода и будет очень мал. Величина входного сопротивления R вх будет очень велика и может достигать 10 9 Ом.

    Полевые транзисторы с изолированным затвором

    2.3.2. Транзисторы с индуцированным каналом

    Данные приборы имеют затвор в виде металлической плёнки, которая изолирована от полупроводника слоем диэлектрика, в виде которого применяется окись кремния. Поэтому полевые транзисторы с изолированным затвором называют МОП и МДП. Аббревиатура МОП расшифровывается как металл, окись, полупроводник, а МДП расшифровывается как металл, диэлектрик, полупроводник.

    МОП-транзисторы могут быть двух видов:

    · транзисторы со встроенным каналом;

    · транзисторы с индуцированным каналом.

    Их графические обозначения приведены на рис. 2.5.

    Рис. 2.5. Графическое обозначение МОП-транзисторов:а – со встроенным каналом n-типа; б – со встроенным каналом p-типа; в – с индуцированным каналом n-типа; г – с индуцированным каналом p-типа

    2.3.1. Транзистор со встроенным каналом

    Структура полевого транзистора со встроенным каналом приведена на рис. 2.6, а . Основой такого транзистора является кристалл кремния р- или n-типа проводимости.

    Рис. 2.6. МОП-транзистор со встроенным каналом: а – структура транзистора со встроенным каналом n-типа; б – стокозатворная характеристика

    Полупроводниковые приборы, работа которых основана на модуляции сопротивления полупроводникового материала поперечным электрическим полем, называют полевыми транзисторами. У них в создании электрического тока участвуют носители заряда только одного типа (электроны или дырки).

    Полевые транзисторы бывают двух видов: с управляющим p-n-переходом и со структурой металл - диэлектрик - полупроводник (МДП-транзисторы).

    Рис. 2.37. Упрощенная структура полевого транзистора с управляющим (а); условные обозначения транзистора, имеющего канал n-типа (б) и р-типа (в); типовые структуры (г, д): структура транзистора с повышенным быстродействием (е)

    Транзистор с управляющим p-n-переходом (рис. 2.37) представляет собой пластину (участок) из полупроводникового материала, имеющего электропроводность определенного типа, от концов которой сделаны два вывода - электроды стока и истока. Вдоль пластины выполнен электрический переход (p-n-переход или барьер Шотки), от которого сделан третий вывод - затвор.

    Внешние напряжения прикладывают так, что между электродами стока и истока протекает электрический ток, а напряжение, приложенное к затвору, смещает электрический переход в обратном направлении. Сопротивление области, расположенной под электрическим переходом, которая носит название канала, зависит от напряжения на затворе. Это обусловлено тем, что размеры перехода увеличиваются с повышением приложенного к нему обратного напряжения, а увеличение области, обедненной носителями заряда, приводит к повышению электрического сопротивления канала.

    Таким образом, работа полевого транзистора с управляющим p-n-переходом основана на изменении сопротивления канала за счет изменения размеров области, обедненной основными носителями заряда, которое происходит под действием приложенного к затвору обратного напряжения.

    Электрод, от которого начинают движение основные носители заряда в канале, называют истоком, а электрод, к которому движутся основные носители заряда, называют стоком. Упрощенная структура полевого транзистора с управляющим p-n-переходом приведена на рис. 2.37, а. Условные обозначения даны на рис. 2.37, б, в, а структуры выпускаемых промышленностью полевых транзисторов - на рис. 2.37, г - е.

    Если в пластинке полупроводника, например n-типа, созданы зоны с электропроводностью p-типа, то при подаче на p-n-переход напряжения, смещающего его в обратном направлении, образуются области, обедненные основными носителями заряда (рис. 2.37, а). Сопротивление полупроводника между электродами истока и стока увеличивается, так как ток проходит только по узкому каналу между переходами. Изменение напряжения затвор - исток приводит к изменению размеров зоны объемного заряда (размеров ), т. е. к изменению сопротивления канала. Канал может быть почти полностью перекрыт и тогда сопротивление между истоком и стоком будет очень высоким (несколько - десятки ).

    Напряжение между затвором и истоком, при котором ток стока достигает заданного низкого значения , называют напряжением отсечки полевого транзистора . Строго говоря, при напряжении отсечки транзистор должен закрываться полностью, но наличие утечек и сложность измерения особо малых токов заставляют считать напряжением отсечки то напряжение, при котором ток достигает определенного малого значения. Поэтому в технических условиях на транзистор указывают, при каком токе стока произведено измерение .

    Ширина p-n-перехода зависит также от тока, протекающего через канал. Если , например (рис. 2.37, а), то ток , протекающий через транзистор, создаст по длине последнего падение напряжения, которое оказывается запирающим для перехода затвор - канал.

    Рис. 2.38. Выходные характеристики полевого транзистора с управляющим его входная характеристика (6) и характеристика передачи (стокозатворная) (в): I - крутая область; II - пологая область, или область насыщения; III - область пробоя

    Это приводит к увеличению ширины и соответственно к уменьшению сечения и проводимости канала, причем ширина p-n-перехода увеличивается по мере приближения к области стока, где будет иметь место наибольшее падение напряжения, вызванное током на сопротивлении канала . Так, если считать, что сопротивление транзистора определяется только сопротивлением канала, то у края p-n-перехода, обращенного к истоку, будет действовать напряжение , а у края, обращенного к стоку, - напряжение . При малых значениях напряжения и малом транзистор ведет себя как линейное сопротивление. Увеличение приводит к почти линейному возрастанию , а уменьшение - к соответствующему уменьшению . По мере роста характеристика все сильнее отклоняется от линейной, что связано с сужением канала у стокового конца. При определенном значении тока наступает так называемый режим насыщения (участок II на рис. 2.38, а), который характеризуется тем. что с увеличением ток меняется незначительно. Это происходит потому, что при большом напряжении канал у стока стягивается в узкую горловину. Наступает своеобразное динамическое равновесие, при котором увеличение и рост тока вызывают дальнейшее сужение канала и соответственно уменьшение тока . В итоге последний остается почти постоянным. Напряжение, при котором наступает режим насыщения, называется напряжением насыщения. Оно, как видно из рис. , меняется при изменении напряжения . Так как влияние на ширину канала у стокового вывода практически одинаково, то

    Итак, напряжение отсечки, определенное при малом напряжении , численно равно напряжению насыщения при , а напряжение насыщения при определенном напряжении на затворе равно разности напряжения огсечки и напряжения затвор - исток.

    При значительном увеличении напряжения стокового конца наблюдается пробой p-n-перехода.

    В выходных характеристиках полевого транзистора можно выделить две рабочие области ОА и ОВ. Область ОА называют крутой областью характеристики, обласгь АВ - пологой или областью насыщения. В крутой области транзистор может быть использован как омическое управляемое сопротивление. В усилительных каскадах транзистор работает на пологим участке характеристики. За точкой В возникает пробой электрического перехода.

    Входная характеристика полевою транзистора с управляющим -переходом (рис. 2.38,б) представляет собой обратную ветвь вольт-амперной характеристики -перехода. Хотя ток затвора несколько меняется при изменении напряжения и достигает наибольшего значения при условии короткого замыкания выводов истока и стока (ток утечки затвора ) - им в большинстве случаев можно пренебречь. Изменение напряжения не вызывает существенных изменений тока затвора, что характерно для обратного тока -переходa.

    При работе в пологой области вольт-амперной характеристики ток стока при заданном напряжении 11ш определяют из выражения

    где - начальный ток стока, под которым ток при и напряжении на стоке, превышающем напряжение насыщения: .

    Так как управление полевым транзистором осуществляется напряжением на затворе, то для количественном оценки управляющего действия затвора используют крутизну характеристики

    Крутизна характеристики достигает максимального значения при . Для определения значения S при любом напряжении продифференцируем выражение

    При выражение (2.73) примет вид

    Подставив (1.74) в выражение (1.73), получим .

    Таким образом, крутизна характеристики полевого транзистора уменьшается при увеличении напряжения, приложенного к его затвору.

    Начальное значение крутизны характеристики можно определить графоаналитическим способом. Для этого проведем касатетельную из точки к стокозатворной характеристике (рис. 2.38. в). Она отсечет на оси напряжений отрезок , и ее наклон определит значение .

    Усилительные свойства полевых транзисторов характеризуются коэффициентом усиления

    который связан с крутизной характеристики и внутренним сопротивлением уравнением , где - дифференциальное внутреннее сопротивление транзистора.

    Действительно, в общем случае .

    Если при одновременном изменении и , то , откуда

    Так же как и у биполярных, у полевых транзисторов различают режимы большого и малого сигналов. Режим большого сигнала чаще всего рассчитывают с помощью входных и выходных характеристик транзистора и эквивалентной схемы рис. 2.39, а. Для анализа режима малого сигнала широко применяют малосигнальные эквивалентные схемы рис. 2.39, б-г (транзистор с каналом p-типа). Так как сопротивления закрытых переходов , в кремниевых полевых транзисторах велики (десятки - сотни МОм), их в большинстве случаев можно не учитывать. Для практических расчетов наиболее удобна эквивалентная схема рис. 2.39, г, хотя она значительно хуже отражает действительные физические процессы, протекающие в рассматриваемых транзисторах. Все емкости затвора на схеме заменены одной эквивалентной емкостью С„ которая заряжается через усредненное эквивалентное сопротивление .

    Рис. 2.39. Упрощенная эквивалентная схема полевого транзистора с управляющим p-n-переходом для постоянного тока (а); малосигнальные эквивалентные схемы: полная (б), упрощенная (в), модифицированная (г).

    Можно считать, что равно статическому сопротивлению в крутой области характеристик - сопротивление между стоком и истоком в открытом состоянии транзистора при заданном напряжении сток - исток, меньшем напряжения насыщения. Сопротивление затвора (омическое) отражено эквивалентным сопротивлением , которое ввиду его большого значения (десятки-сотни ) можно не учитывать.

    Типовые значения параметров кремниевых транзисторов, входящих в эквивалентную схему: .

    Емкости у полевого транзистора, а также конечная скорость движения носителей заряда в канале определяют его инерционные свойства. Инерционность транзистора в первом приближении учитывают путем введения операторной крутизны характеристики

    где - предельная частота, определенная на уровне 0,7 статического значения крутизны характеристики.

    При изменении температуры параметры и характеристики полевых транзисторов с управляющим изменяются из-за воздействия следующих факторов: изменения обратного тока закрытого p-n-перехода; изменения контактной разности потенциалов изменения удельного сопротивления канала.

    Обратный ток у закрытого возрастает по экспоненциальному закону при увеличении температуры. Ориентировочно можно считать, что он удваивается при увеличении температуры на 6-8 С. Если в цепи затвора транзистора стоит большое внешнее сопротивление, то падение напряжения на нем, вызванное изменившимся током, может существенно изменить напряжение на затворе.

    Контактная разность потенциалов уменьшается при увеличении температуры приблизительно на . При неизменном напряжении на затворе это приводит к увеличению тока стока. Для транзисторов с низким напряжением отсечки этот эффект является преобладающим и изменения тока стока будут иметь положительные значения.

    Так как температурный коэффициент, характеризующий изменение удельного сопротивления канала, положителен, то ток стока при росте температуры уменьшается. Это открывает возможность правильным выбором положения рабочей точки транзистора взаимно компенсировать изменения тока , вызванные изменением контактной разности потенциалов и удельного сопротивления канала. В итоге ток стока будет почти постоянным в широком диапазоне температур.

    Рабочую точку, в которой изменение гока стока с изменением температуры имеет минимальное значение, называют термостабильной точкой. Ее ориентировочное положение можно найти из уравнения

    Из (2.78) видно, что при значительном крутизна характеристики в термостабильной точке невелика и от транзистора можно получить значительно меньший коэффициент усиления, чем при работе с малым напряжением.

    Рис. 2.40. Включение полевого транзистора в схемы: а - с общим истоком; б - с общим стоком

    Современные полевые транзисторы, выполненные на основе кремния, работоспособны до температуры 120-150 С. Их включение в схемы усилительных каскадов с общим истоком и общим стоком показано на рис. 2.40, а, б. Постоянное напряжение обеспечивает получение определенного значения сопротивления канала и определенный ток стока . При подаче входного усиливаемого напряжения потенциал затвора меняется, а соответственно изменяются токи стока и истока, а также падение напряжения на резисторе R.

    Приращение падения напряжения на резисторе R при большом его значении значительно больше приращений входного напряжения. За счет этого осуществляется усиление сигнала. Ввиду малой распространенности включение с общим затвором не показано. При изменении типа электропроводности канала меняются только полярность приложенных напряжений и направление токов, в том числе и в эквивалентных схемах.

    Основными премуществами полевых транзисторов с управляющим p-n-переходом перед биполярными являются высокое входное сопротивление, малые шумы, простота изготовления, отсутствие в открытом состоянии остаточного напряжения между истоком и стоком открытого транзистора.

    МДП - транзисторы могут быть двух типов: транзисторы с встроенными каналами (канал создается при изготовлении) и транзисторы с индуцированными каналами (канал возникает под действием напряжения, приложенного к управляющим электродам).

    Транзисторы первого типа могут работать как в режиме обеднения канала носителями заряда, так и в режиме обогащения. Транзисторы второго типа можно использовать только в режиме обогащения. У МДП-транзисторов в отличие от транзисторов с управляющим p-n-переходом металлический затвор изолирован от полупроводника слоем диэлектрика и имеется дополнительный вывод от кристалла, на котором выполнен прибор (рис. 2.41), называемый подложкой.

    Рис. 2.41. Структуры МДП-транзистора: а - планарный транзистр с индуцированным каналом. б - планарный транзистор со встроенным каналом; , транзистр - и .

    Рис. 2.42. Распределение носителей заряда в приповерхностном слое

    Управляющее напряжение можно подавать как между затвором и подложкой, так и независимо на подложку и затвор. Под влиянием образующегося электрического поля у поверхности полупроводника появляется канал -типа за счет отталкивания электронов от поверхности в глубь полупроводника в транзисторе с индуцированным каналом. В транзисторе с встроенным каналом происходит расширение или сужение имевшегося канала. Изменение управляющего напряжения меняет ширину канала и соответственно сопротивление и ток транзистора.

    Существенным преимуществом МДП-транзисторов является высокое входное сопротивление, достигающее значений Ом (у транзисторов с управляющим -переходом Ом).

    Рассмотрим несколько подробнее работу МДП-транзистора с индуцированным -каналом. Пусть в качестве исходного материала транзистора использован кремний, имеющий электропроводность -типа. Роль диэлектрической пленки выполняет диоксид кремния . При отсутствии смещения приповерхностный слой полупроводника обычно обогащен электронами (рис. 2.42, а). Это объясняется наличием положительно заряженных ионов в пленке диэлектрика, что является следствием предшествующего окисления кремния и фотолитографической его обработки, а также присутствием ловушек на границе . Напомним, что ловушки представляют собой совокупность энергетических уровней, расположенных глубоко в запрещенной зоне, близко к ее середине.

    При подаче на затвор отрицательного напряжения электроны приповерхностного слоя отталкиваются в глубь полупроводника, а дырки движутся к поверхности. Приповерхностный слой приобретает дырочную электропроводность (рис. 2.42, б). В нем появляется тонкий инверсный слой, соединяющий сток с истоком. Этот слой играет роль канала. Если между истоком и стоком приложено напряжение, то дырки, перемещаясь по каналу, создают ток стока. Путем изменения напряжения на затворе можно расширять или сужать канал и тем самым увеличивать или уменьшать ток стока.

    Напряжение на затворе, при котором индуцируется канал, называют пороговым напряжением . Так как канал возникает постепенно, по мере увеличения напряжения на затворе, то для исключения неоднозначности в его определении обычно задается определенное значение тока стока, при превышении которого считается, что потенциал затвора достиг порогового напряжения .

    По мере удаления от поверхности полупроводника концентрация индуцированных дырок уменьшается. На расстоянии, приблизительно равном толщине канала, электропроводность становится собственной. Затем идет участок, обедненный основными носителями заряда (-переход). Благодаря ему сток, исток и канал изолированы от подложки; -переход смещен приложенным напряжением в обратном направлении. Очевидно, что его ширину и ширину канала можно изменять за счет подачи на подложку дополнительного напряжения относительно электродов стока и истока транзистора. Следовательно, током стока можно управлять не только путем изменения напряжения на затворе, но и за счет изменения напряжения на подложке. В этом случае управление МДП-транзистором аналогично управлению полевым транзистором с управляющим -переходом. Для образования канала на затвор должно быть подано напряжение, большее .

    Толщина инверсного слоя значительно меньше толщины обедненного слоя. Если последний составляет сотни - тысячи нм, то толщина индуцированного канала составляет всего 1-5 нм. Другими словами, дырки индуцированного канала «прижаты» к поверхности полупроводника, поэтому структура и свойства границы полупроводник - диэлектрик играют в МДП-транзисторах очень важную роль.

    Дырки, образующие канал, поступают в него не только из подложки -типа, где их мало и генерируются они сравнительно медленно, но также и из слоев -типа истока и стока, где их концентрация практически неограниченна, а напряженность поля вблизи этих электродов достаточно велика.

    В транзисторах с встроенным каналом ток в цепи стока будет протекать и при нулевом напряжении на затворе. Для прекращения его необходимо к затвору приложить положительное напряжение (при структуре с каналом -типа), равное или большее напряжения отсечки . При этом дырки из инверсного слоя будут практически полностью вытеснены в глубь полупроводника и канал исчезнет. При приложении отрицательного напряжения канал расширяется и ток увеличивается. Таким образом. МДП-транзисторы с встроенными каналами работают как в режиме обеднения, так и в режиме обогащения.

    Рис. 2.43. Структура МДП-транзистора с измененной шириной канала при протекании тока (а); его выходные характеристики с индуцированным (б) и встроенным (в) каналами: I крутая область; II - пологая область, или область насыщения; III - область пробоя; 1 - обеденный слой

    Как и полевые транзисторы с управляющим -переходом, МДП-транзисторы при малых напряжениях (в области рис. 2.43, б, в) ведут себя подобно линеаризованному управляемому сопротивлению. При увеличении напряжения ширина канала уменьшается вследствие падения на нем напряжения и изменения результирующего электрического поля. Это особенно сильно проявляется в той части канала, которая находится вблизи стока (рис. 2.43, а). Перепады напряжения, создаваемые током , приводят к неравномерному распределению напряженности электрического поля вдоль канала, причем оно увеличивается по мере приближения к стоку. При напряжении канал вблизи стока становится настолько узким, что наступает динамическое равновесие, когда увеличение напряжения вызывает уменьшение ширины канала и повышение его сопротивления. В итоге ток мало меняется при дальнейшем увеличении напряжения . Эти процессы изменения ширины канала в зависимости от напряжения такие же, как и в полевых транзисторах с управляющим p-n-переходом.

    Выходные характеристики МДП-транзисторов аналогичны характеристикам полевых транзисторов с управляющим (рис. 2.43, б, в). В них можно выделить крутую и пологую области, а также область пробоя. В крутой области МДП-транзистор может работать как электрически управляемое сопротивление. Пологая область II обычно используется при построении усилительных каскадов. Аналитические аппроксимации вольт-амперных характеристик МДП-транзисторов не очень удобны и мало применяются в инженерной практике. При ориентировочных оценках тока стока в области насыщения можно использовать уравнение

    Для транзисторов с встроенным каналом можно использовать уравнения (2.79), если заменить и учитывать знаки напряжений и .. Они характеризуют параметры полевого транзистора, который при заданном режиме измерения представлен эквивалентной схемой рис. 2.44, д. Она хуже отражает особенности транзистора, но ее параметры известны или легко могут быть измерены (входная емкость , проходная емкость , выходная емкость ).

    Операторное уравнение крутизны характеристики МДП-транзисторов имеет тот же вид, что и для полевых транзисторов с управляющим При этом постоянная времени . В типовом случае при длине канала 5 мкм предельная частота, на которой крутизна характеристики уменьшается в 0,7 раза, лежит в пределах нескольких сотен мегагерц.

    Температурная зависимость порогового напряжения и напряжения отсечки обусловлена изменением положения уровня Ферми, изменением объемного заряда в обедненной области и влиянием температуры на значение заряда в диэлектрике. У МДП-транзисторов также можно найти термостабильную рабочую точку, в которой ток стока мало зависит от температуры. У разных транзисторов значение тока стока в термостабильной точке находится в пределах . Важным преимуществом МДП-транзисторов перед биполярными является малое падение напряжения на них при коммутации малых сигналов. Так, если в биполярных транзисторах в режиме насыщения напряжение

    При уменьшении оно может быть сведено до значения, стремящегося к нулю. Так как широкое распространение получили МДП-транзисторы с диэлектриком из диоксида кремния , то в дальнейшем будем их называть МОП-транзисторами.

    В настоящее время промышленность также выпускает МОП-транзисторы с двумя изолированными затворами (тетродные), например . Наличие второго затвора позволяет одновременно управлять током транзистора с помощью двух управляющих напряжений, что облегчает построение различных усилительных и умножительных устройств. Характеристики их аналогичны характеристикам однозатворных полевых транзисторов, только количество их больше, так как они строятся для напряжения каждого затвора при неизменном напряжении на другом затворе. Соответственно различают крутизну характеристики по первому и второму затворам, напряжение отсечки первого и второго затворов и т. д. Подача напряжений на затворы ничем не отличается от подачи напряжения на затвор однозатворного МОП-транзистора.

    Должно превышать пороговое. В противном случае канал не появится и транзистор будет заперт.


    Силовые инверторы, да и многие другие электронные устройства, редко обходятся сегодня без применения мощных MOSFET (полевых) или . Это касается как высокочастотных преобразователей типа сварочных инверторов, так и разнообразных проектов-самоделок, схем коих полным полно в интернете.

    Параметры выпускаемых ныне силовых полупроводников позволяют коммутировать токи в десятки и сотни ампер при напряжении до 1000 вольт. Выбор этих компонентов на современном рынке электроники довольно широк, и подобрать полевой транзистор с требуемыми параметрами отнюдь не является проблемой сегодня, поскольку каждый уважающий себя производитель сопровождает конкретную модель полевого транзистора технической документацией, которую всегда можно найти как на официальном сайте производителя, так и у официальных дилеров.

    Прежде чем приступить к проектированию того или иного устройства, с применением названных силовых компонентов, всегда нужно точно знать, с чем имеешь дело, особенно когда выбираешь конкретный полевой транзистор. Для этого и обращаются к datasheet"ам. Datasheet представляет собой официальный документ от производителя электронных компонентов, в котором приводятся описание, параметры, характеристики изделия, типовые схемы и т.д.

    Давайте же посмотрим, что за параметры указывает производитель в даташите, что они обозначают и для чего нужны. Рассмотрим на примере даташита на полевой транзистор IRFP460LC. Это довольно популярный силовой транзистор, изготовленный по технологии HEXFET.

    HEXFET подразумевает такую структуру кристалла, когда в одном кристалле организованы тысячи параллельно-включенных МОП-транзисторных ячеек гексагональной формы. Это решение позволило значительно снизить сопротивление открытого канала Rds(on) и сделало возможным коммутацию больших токов. Однако, перейдем к обзору параметров, указанных непосредственно в даташите на IRFP460LC от International Rectifier (IR).

    См.

    В самом начале документа дано схематичное изображение транзистора, приведены обозначения его электродов: G-gate (затвор), D-drain (сток), S-source (исток), а также указаны его главные параметры и перечислены отличительные качества. В данном случае мы видим, что этот полевой N-канальный транзистор рассчитан на максимальное напряжение 500 В, сопротивление его открытого канала составляет 0,27 Ом, а предельный ток равен 20 А. Пониженный заряд затвора позволяет использовать данный компонент в высокочастотных схемах при невысоких затратах энергии на управление переключением. Ниже приведена таблица (рис. 1) предельно допустимых значений различных параметров в различных режимах.

      Id @ Tc = 25°C; Continuous Drain Current Vgs @ 10V - максимальный продолжительный, непрерывный ток стока, при температуре корпуса полевого транзистора в 25°C, составляет 20 А. При напряжении затвор-исток 10 В.

      Id @ Tc = 100°C; Continuous Drain Current Vgs @ 10V - максимальный продолжительный, непрерывный ток стока, при температуре корпуса полевого транзистора в 100°C, составляет 12 А. При напряжении затвор-исток 10 В.

      Idm @ Tc = 25°C; Pulsed Drain Current - максимальный импульсный, кратковременный ток стока, при температуре корпуса полевого транзистора в 25°C, составляет 80 А. При условии соблюдения приемлемой температуры перехода. На рисунке 11 (Fig 11) дается пояснение относительно соответствующих соотношений.

      Pd @ Tc = 25°C Power Dissipation - максимальная рассеиваемая корпусом транзистора мощность, при температуре корпуса в 25°C, составляет 280 Вт.

      Linear Derating Factor - с повышением температуры корпуса на каждый 1°C, рассеиваемая мощность возрастает еще на 2,2 Вт.

      Vgs Gate-to-Source Voltage - максимальное напряжение затвор-исток не должно быть выше +30 В или ниже -30 В.

      Eas Single Pulse Avalanche Energy - максимальная энергия единичного импульса на стоке составляет 960 мДж. Пояснение дается на рисунке 12 (Fig 12).

      Iar Avalanche Current - максимальный прерываемый ток составляет 20 А.

      Ear Repetitive Avalanche Energy - максимальная энергия повторяющихся импульсов на стоке не должна превышать 28 мДж (для каждого импульса).

      dv/dt Peak Diode Recovery dv/dt - предельная скорость нарастания напряжения на стоке равна 3,5 В/нс.

      Tj, Tstg Operating Junction and Storage Temperature Range – безопасный температурный диапазон от -55°C до +150°C.

      Soldering Temperature, for 10 seconds - допустимая при пайке максимальная температура составляет 300°C, причем на расстоянии минимум 1,6мм от корпуса.

      Mounting torque, 6-32 or M3 screw - максимальный момент при креплении корпуса не должен превышать 1,1 Нм.

      Rjc Junction-to-Case (кристалл-корпус) 0.45 °C/Вт.

      Rcs Case-to-Sink, Flat, Greased Surface (корпус-радиатор) 0.24 °C/Вт.

      Rja Junction-to-Ambient (кристалл-окружающая среда) зависит от радиатора и внешних условий.

    Следующая таблица содержит все необходимые электрические характеристики полевого транзистора при температуре кристалла 25°C (см. рис. 3).

      V(br)dss Drain-to-Source Breakdown Voltage - напряжение сток-исток, при котором наступает пробой равно 500 В.

      ΔV(br)dss/ΔTj Breakdown Voltage Temp.Coefficient - температурный коэффициент, напряжения пробоя, в данном случае 0,59 В/°C.

      Rds(on) Static Drain-to-Source On-Resistance - сопротивление сток-исток открытого канала при температуре 25°C, в данном случае, составляет 0,27 Ом. Оно зависит от температуры, но об этом позже.

      Vgs(th) Gate Threshold Voltage - пороговое напряжение включения транзистора. Если напряжение затвор-исток будет меньше (в данном случае 2 - 4 В), то транзистор будет оставаться закрытым.

      gfs Forward Transconductance - Крутизна передаточной характеристики, равна отношению изменения тока стока к изменению напряжения на затворе. В данном случае измерена при напряжении сток-исток 50 В и при токе стока 20 А. Измеряется в Ампер/Вольт или Сименсах.

      Idss Drain-to-Source Leakage Current - ток утечки стока, он зависит от напряжения сток-исток и от температуры. Измеряется микроамперами.

      Igss Gate-to-Source Forward Leakage и Gate-to-Source Reverse Leakage - ток утечки затвора. Измеряется наноамперами.

      Qg Total Gate Charge - заряд, который нужно сообщить затвору для открытия транзистора.

      Qgs Gate-to-Source Charge - заряд емкости затвор-исток.

      Qgd Gate-to-Drain ("Miller") Charge - соответствующий заряд затвор-сток (емкости Миллера)

    В данном случае эти параметры измерены при напряжении сток-исток, равном 400 В и при токе стока 20 А. На рисунке 6 дано пояснение относительно связи величины напряжения затвор-исток и полного заряда затвора Qg Total Gate Charge, а на рисунках 13 a и b приведены схема и график этих измерений.

      td(on) Turn-On Delay Time - время открытия транзистора.

      tr Rise Time - время нарастания импульса открытия (передний фронт).

      td(off) Turn-Off Delay Time - время закрытия транзистора.

      tf Fall Time - время спада импульса (закрытие транзистора, задний фронт).

    В данном случае измерения проводились при напряжении питания 250 В, при токе стока 20 А, при сопротивлении в цепи затвора 4,3 Ом, и сопротивлении в цепи стока 20 Ом. Схема и графики приведены на рисунках 10 a и b.

      Ld Internal Drain Inductance - индуктивность стока.

      Ls Internal Source Inductance - индуктивность истока.

    Данные параметры зависит от исполнения корпуса транзистора. Они важны при проектировании драйвера, поскольку напрямую связаны с временными параметрами ключа, особенно это актуально при разработке высокочастотных схем.

      Crss Reverse Transfer Capacitance - емкость затвор-сток (емкость Миллера).

    Данные измерения проводились на частоте 1 МГц, при напряжении сток-исток 25 В. На рисунке 5 показана зависимость данных параметров от напряжения сток-исток.

    Следующая таблица (см. рис. 4) описывает характеристики интегрированного внутреннего диода полевого транзистора, условно находящегося между истоком и стоком.

      Is Continuous Source Current (Body Diode) - максимальный непрерывный длительный ток диода.

      Ism Pulsed Source Current (Body Diode) - максимально допустимый импульсный ток через диод.

      Vsd Diode Forward Voltage - прямое падение напряжения на диоде при 25°C и токе стока 20 А, когда на затворе 0 В.

      trr Reverse Recovery Time - время обратного восстановления диода.

      Qrr Reverse Recovery Charge - заряд восстановления диода.

      ton Forward Turn-On Time - время открытия диода обусловлено главным образом индуктивностями стока и истока.

    Приведены пределы тока стока, в зависимости от напряжения сток-исток и напряжения затвор-исток при длительности импульса 20 мкс. Первый рисунок - для температуры 25°C, второй - для 150°C. Очевидно влияние температуры на управляемость открытием канала.

    На рисунке 6 графически представлена передаточная характеристика данного полевого транзистора. Очевидно, чем ближе напряжение затвор-исток к 10 В, тем лучше открывается транзистор. Влияние температуры также просматривается здесь довольно отчетливо.

    На рисунке 7 приведена зависимость сопротивления открытого канала при токе стока в 20 А от температуры. Очевидно, с ростом температуры увеличивается и сопротивление канала.

    На рисунке 9 приведена зависимость прямого падения напряжения на внутреннем диоде от величины тока стока и от температуры. На рисунке 8 показана область безопасной работы транзистора в зависимости от длительности времени открытого состояния, величины тока стока и напряжения сток-исток.

    На рисунке 11 показана зависимость максимального тока стока от температуры корпуса.


    На рисунках а и b представлены схема измерений и график, показывающий временную диаграмму открытия транзистора в процессе нарастания напряжения на затворе и в процессе разряда емкости затвора до нуля.

    На рисунке 14 показана зависимость максимально допустимой энергии импульса от величины прерываемого тока и температуры.

    На рисунках а и b показаны график и схема измерений заряда затвора.

    На рисунке 16 показана схема измерений параметров и график типичных переходных процессов во внутреннем диоде транзистора.

    На последнем рисунке изображен корпус транзистора IRFP460LC, его размеры, расстояние между выводами, их нумерация: 1-затвор, 2-сток, 3-исток.

    Так, прочитав даташит, каждый разработчик сможет подобрать подходящий силовой или не очень, полевой или IGBT-транзистор для проектируемого либо ремонтируемого силового преобразователя, будь то , или любой другой силовой импульсный преобразователь.

    Зная параметры полевого транзистора, можно грамотно разработать драйвер, настроить контроллер, провести тепловые расчеты, и подобрать подходящий радиатор без необходимости ставить лишнее.

    ТЕМА 5. ПОЛЕВЫЕ ТРАНЗИСТОРЫ

    Полевой транзистор – это электропреобразовательный прибор, в котором ток, протекающий через канал, управляется электрическим полем, возникающим при приложении напряжения между затвором и истоком, и который предназначен для усиления мощности электромагнитных колебаний.

    К классу полевых относят транзисторы, принцип действия которых основан на использовании носителей заряда только одного знака (электронов или дырок). Управление током в полевых транзисторах осуществляется изменением проводимости канала, через который протекает ток транзистора под воздействием электрического поля. Вследствие этого транзисторы называют полевыми.

    По способу создания канала различают полевые транзисторы с затвором в виде управляющего р-n- перехода и с изолированным затвором (МДП - или МОП - транзисторы): встроенным каналом и индуцированным каналом.

    В зависимости от проводимости канала полевые транзисторы делятся на: полевые транзисторы с каналом р- типа и n- типа. Канал р- типа обладает дырочной проводимостью, а n- типа – электронной.

    5.1 Полевые транзисторы с управляющим р- n- переходом

    5.1.1 Устройство и принцип действия

    Полевой транзистор с управляющим р-n- переходом – это полевой транзистор, затвор которого отделен в электрическом отношении от канала р-n-переходом, смещенным в обратном направлении.

    Рисунок 5.1 – Устройство полевого транзистора с управляющим р-n-переходом (каналом n- типа)

    Рисунок 5.2 – Условное обозначение полевого транзистора с р-n-переходом и каналом n- типа (а), каналом р- типа (б)

    Каналом полевого транзистора называют область в полупроводнике, в которой ток основных носителей заряда регулируется изменением ее поперечного сечения.

    Электрод (вывод), через который в канал входят основные носители заряда, называют истоком. Электрод, через который из канала уходят основные носители заряда, называют стоком. Электрод, служащий для регулирования поперечного сечения канала за счет управляющего напряжения, называют затвором.

    Как правило, выпускаются кремниевые полевые транзисторы. Кремний применяется потому, что ток затвора, т.е. обратный ток р-n- перехода, получается во много раз меньше, чем у германия.

    Условные обозначения полевых транзисторов с каналом n- и р- типов приведены на рис. 5.2.

    Полярность внешних напряжений, подводимых к транзистору, показана на рис. 5.1. Управляющее (входное) напряжение подается между затвором и истоком. Напряжение Uзи является обратным для обоих р-n- переходов. Ширина р-n- переходов, а, следовательно, эффективная площадь поперечного сечения канала, его сопротивление и ток в канале зависят от этого напряжения. С его ростом расширяются р-n- переходы, уменьшается площадь сечения токопроводящего канала, увеличивается его сопротивление, а, следовательно, уменьшается ток в канале. Следовательно, если между истоком и стоком включить источник напряжения Uси, то силой тока стока Iс, протекающего через канал, можно управлять путем изменения сопротивления (сечения) канала с помощью напряжения, подаваемого на затвор. На этом принципе и основана работа полевого транзистора с управляющим р-n- переходом.

    При напряжении Uзи = 0 сечение канала наибольшее, его сопротивление наименьшее и ток Iс получается наибольшим.

    Ток стока Iс нач при Uзи = 0 называют начальным током стока.

    Напряжение Uзи, при котором канал полностью перекрывается, а ток стока Iс становится весьма малым (десятые доли микроампер), называют напряжением отсечки Uзиотс.

    5.1.2 Статические характеристики полевого транзистора с управляющим р- n- переходом

    Рассмотрим вольт - амперные характеристики полевых транзисторов с р-n- переходом. Для этих транзисторов представляют интерес два вида вольт - амперных характеристик: стоковые и стоко - затворные.

    Стоковые (выходные) характеристики полевого транзистора с р-n- переходом и каналом n- типа показаны на рис. 5.3, а. Они отражают зависимость тока стока от напряжения Uси при фиксированном напряжении Uзи: Ic= f(Uси) при Uзи = const.

    а) б)

    Рисунок 5.3 – Вольт-амперные характеристики полевого транзистора с р-п- переходом и каналом п- типа: а – стоковые (выходные); б – стоко - затворная

    Особенностью полевого транзистора является то, что на проводимость канала оказывает влияние как управляющее напряжение Uзи, так и напряжение Uси. При Uси = 0 выходной ток Iс = 0. При Uси > 0 (Uзи = 0) через канал протекает ток Ic, в результате чего создается падение напряжения, возрастающее в направлении стока. Суммарное падение напряжения участка исток-сток равно Uси. Повышение напряжения Uси вызывает увеличение падения напряжения в канале и уменьшение его сечения, а следовательно, уменьшение проводимости канала. При некотором напряжении Uси происходит сужение канала, при котором границы обоих р-n- переходов смыкаются и сопротивление канала становится высоким. Такое напряжение Uси называют напряжением перекрытия или напряжением насыщения Uсинас. При подаче на затвор обратного напряжения Uзи происходит дополнительное сужение канала, и его перекрытие наступает при меньшем значении напряжения Uсинас. В рабочем режиме используются пологие (линейные) участки выходных характеристик.

    Стоко - затворная характеристика полевого транзистора показывает зависимость тока Iс от напряжения Uзи при фиксированном напряжении Uси: Ic= f(Uси) при Uси = const (рис. 5.3, б).

    5.1.3 Основные параметры

    · максимальный ток стока Iсmax (при Uзи = 0);

    · максимальное напряжение сток-исток Uсиmax;

    · напряжение отсечки Uзиотс;

    · внутреннее (выходное) сопротивление ri − представляет собой сопротивление транзистора между стоком и истоком (сопротивление канала) для переменного тока:

    при Uзи = const;

    · крутизна стоко-затворной характеристики:

    при Uси = const,

    отображает влияние напряжение затвора на выходной ток транзистора;

    · входное сопротивление

    при Uси = const транзистора определяется сопротивлением р-n- переходов, смещенных в обратном направлении. Входное сопротивление полевых транзисторов с р-n- переходом довольно велико (достигает единиц и десятков мегаом), что выгодно отличает их от биполярных транзисторов.

    5.2 Полевые транзисторы с изолированным затвором

    5.2.1 Устройство и принцип действия

    Полевой транзистор с изолированным затвором (МДП - транзистор) – это полевой транзистор, затвор которого отделен в электрическом отношении от канала слоем диэлектрика.

    МДП - транзисторы (структура: металл-диэлектрик-полупроводник) выполняют из кремния. В качестве диэлектрика используют окисел кремния SiO2. отсюда другое название этих транзисторов – МОП - транзисторы (структура: металл-окисел-полупроводник). Наличие диэлектрика обеспечивает высокое входное сопротивление рассматриваемых транзисторов (1012 … 1014Ом).

    Принцип действия МДП - транзисторов основан на эффекте изменения проводимости приповерхностного слоя полупроводника на границе с диэлектриком под воздействием поперечного электрического поля. Приповерхностный слой полупроводника является токопроводящим каналом этих транзисторов. МДП - транзисторы выполняют двух типов – со встроенным и с индуцированным каналом.

    Рассмотрим особенности МДП - транзисторов со встроенным каналом. Конструкция такого транзистора с каналом n-типа показана на рис. 5.4, а. В исходной пластинке кремния р- типа с относительно высоким удельным сопротивлением, которую называют подложкой, с помощью диффузионной технологии созданы две сильнолегированные области с противоположным типом электропроводности – n. На эти области нанесены металлические электроды – исток и сток. Между истоком и стоком имеется тонкий приповерхностный канал с электропроводностью n- типа. Поверхность кристалла полупроводника между истоком и стоком покрыта тонким слоем (порядка 0,1 мкм) диэлектрика. На слой диэлектрика нанесен металлический электрод – затвор. Наличие слоя диэлектрика позволяет в таком полевом транзисторе подавать на затвор управляющее напряжение обеих полярностей.

    Рисунок 5.4 – Конструкция МДП - транзистора со встроенным каналом n- типа (а); семейство его стоковых характеристик (б); стоко-затворная характеристика (в)

    При подаче на затвор положительного напряжения, электрическим полем, которое при этом создается, дырки из канала будут выталкиваться в подложку, а электроны вытягиваться из подложки в канал. Канал обогащается основными носителями заряда – электронами, его проводимость увеличивается и ток стока возрастает. Этот режим называют режимом обогащения.

    При подаче на затвор напряжения, отрицательного относительно истока, в канале создается электрическое поле, под влиянием которого электроны выталкиваются из канала в подложку, а дырки втягиваются из подложки в канал. Канал обедняется основными носителями заряда, его проводимость уменьшается и ток стока уменьшается. Такой режим транзистора называют режимом обеднения.

    В таких транзисторах при Uзи = 0, если приложить напряжение между стоком и истоком (Uси > 0), протекает ток стока Iснач, называемый начальным и, представляющий собой поток электронов.

    Конструкция МДП - транзистора с индуцированным каналом n- типа показана на рис. 5.5, а

    Транзистор (transistor, англ.) – триод, из полупроводниковых материалов, с тремя выходами, основное свойство которого – сравнительно низким входным сигналом управлять значительным током на выходе цепи. В радиодеталях, из которых собирают современные сложные электроприборы, используются полевые транзисторы. Их свойства позволяют решать задачи по выключению или включению тока в электрической цепи печатной платы, или его усилению.

    Что такое полевой транзистор

    Полевой транзистор - это устройство с тремя или четырьмя контактами, в котором ток на двух контактах регулируется напряжением электрического поля на третьем. Поэтому их называют полевыми.

    Контакты:

    Полевой транзистор с п – р переходом – особый вид транзисторов, которые служат для управления током .

    Он отличается от простого обычного тем, что ток в нем проходит, не пересекая зоны р — n перехода, зоны, образующейся на границы этих двух зон. Размер р — n зоны регулируется.

    Полевые транзисторы, их виды

    Полевые транзисторы с п – р переходом делят на классы:

    1. По типу канала проводника: n или р. От канала зависит знак, полярность, сигнала управления. Она должна быть противоположна по знаку n -зоне.
    2. По структуре прибора: диффузные, сплавные по р – n — переходом, с затвором , тонкопленочные.
    3. По числу контактов: 3-х и 4-контактные. В случае 4-контактного прибора, подложка также исполняет роль затвора.
    4. По используемым материалам: германий, кремний, арсенид галлия.

    Классы делятся по принципу работы:

    • устройство под управлением р — n перехода;
    • устройство с изолированным затвором или с барьером Шоттки.

    Полевой транзистор, принцип работы

    По-простому, как работает полевой транзистор с управляющим р-п переходом, можно сказать так: радиодеталь состоит из двух зон: р — перехода и п — перехода. По зоне п течет электрический ток. Зона р – перекрывающая зона своего рода вентиль. Если на нее сильно надавить, она перекрывает зону для прохождения тока и его проходит меньше. Или, если давление снизить пройдет больше. Такое давление осуществляют увеличением напряжения на контакте затвора, находящегося в зоне р.

    Прибор с управляющим р — п канальным переходом - это полупроводниковая пластина с электропроводностью одного из этих типов. К торцам пластины подсоединены контакты: сток и исток, в середине - контакт затвора. Действие устройства основано на изменяемости толщины пространства р-п перехода. Поскольку в запирающей области почти нет подвижных носителей заряда, ее проводимость равна нулю . В полупроводниковой пластине, в области не под воздействием запирающего слоя, создается проводящий ток канал. При подаче отрицательного напряжения по отношению к истоку, на затвор создается поток, по которому истекают носители заряда.

    В случае изолированного затвора, на нем расположен тонкий слой диэлектрика. Этот вид устройства работает на принципе электрического поля . Чтобы разрушить его достаточно небольшого электричества. Поэтому для защиты от статического напряжения, которое может достигать тысяч вольт, создают специальные корпуса приборов — они позволяют минимизировать воздействие вирусного электричества.

    Зачем нужен полевой транзистор

    Рассматривая работу сложной электронной техники, как работу полевого транзистора (как одного из компонентов интегральной схемы) сложно представить, что основных направления его работы пять:

    1. Усилители высоких частот.
    2. Усилители низких частот.
    3. Модуляция.
    4. Усилители постоянного тока.
    5. Ключевые устройства (выключатели).

    На простом примере работу транзистора, как выключателя, можно представить как компоновку микрофона с лампочкой. Микрофон улавливает звук, от этого появляется электрический ток. Он поступает на запертый полевой транзистор. Своим присутствием ток включает устройство, включает электрическую цепь, к которой подключена лампочка. Лампочка загорается при улавливании звука микрофоном, но горит за счет источника питания, не связанного с микрофоном и более мощного.

    Модуляция применяется для управления информационным сигналом. Сигнал управляет частотой колебания. Модуляция применяется для качественного звукового сигнала в радио, для передачи звукового ряда в телевизионных передачах, трансляции цвета и телевизионного сигнала высокого качества. Она применяется везде, где требуется работа с материалом высокого качества.

    Как усилитель полевой транзистор упрощенно работает так: графически любой сигнал, в частности, звуковой ряд, можно представить в виде ломаной линии, где ее длина – это время, а высота изломов частота звука. Для усиления звука на радиодеталь подают мощное напряжение, которое приобретает необходимые частоты, но с более большими значениями, за счет подачи слабого сигнала на управляющий контакт. Другими словами, устройство пропорционально перерисовывает изначальную линию, но с более высокими пиковыми значениями.

    Применение полевых транзисторов

    Первым прибором, поступившим в продажу, где использовался полевой транзистор с управляющим p-n переходом, был слуховой аппарат . Его появление зафиксировано в пятидесятых годах прошлого века. В промышленных масштабах их применяли в телефонных станциях.

    В современном мире, устройства применяют во всей электротехнике . Благодаря маленьким размерам и разнообразию характеристик полевого транзистора, встретить его можно в кухонной технике, аудио и телевизионной технике, компьютерах и электронных детских игрушках. Их применяются в системах сигнализации как охранных механизмов, так и пожарной сигнализации.

    На заводах транзисторное оборудование применяется для регуляторов мощности станков . В транспорте от работы оборудования на поездах и локомотивов, до системы впрыска топлива частных автомобилей. В ЖКХ от систем диспетчеризации, до систем управления уличным освещением.

    Одна из важнейших областей применения транзисторов – производство процессоров . По сути, весь процессор состоит из множества миниатюрных радиодеталей. Но при переходе на частоту работы выше 1,5 ГГц, они лавинообразно начинают потреблять энергию. Поэтому производители процессоров пошли по пути многоядерности, а не путем увеличения тактовых частот.

    Плюсы и минусы полевых транзисторов

    Полевые транзисторы своими характеристиками оставили далеко позади другие виды устройства. Широкое применение они нашли в интегральных схемах в роли выключателей.

    • каскад деталей расходует мало энергии;
    • усиление выше, чем у других видов;
    • высокая помехоустойчивость достигается отсутствием прохождения тока в затворе;
    • более высокая скорость включения и выключения – они могут работать на недоступных другим транзисторам частотах.
    • более низкая температура разрушения, чем у других видов;
    • на частоте 1,5 ггц, потребляемая энергия начинает резко возрастать;
    • чувствительность к статическому электричеству.

    Характеристики полупроводниковых материалов, взятых за основу полевых транзисторов, позволили применять устройства в быту и производстве . На основе плевых транзисторов создали бытовую технику в привычном для современного человека виде. Обработка высококачественных сигналов, производство процессоров и других высокоточных компонентов невозможна без достижений современной науки.