Кислород и его получение. Кислород – рождающий кислоты Где применяется жидкий кислород

Широко используется в медицине . Обычно промышленное получение основывается на фракционной перегонке воздуха . Коэффициент расширения (англ. expansion ratio ) кислорода при смене агрегатного состояния на газообразное составляет 860:1 при 20 °C, что иногда используется в системах снабжения кислородом для дыхания в коммерческих и военных самолётах . Основным и практически неисчерпаемым источником получения жидкого кислорода является атмосферный воздух: производится сжижение воздуха и последующее разделение его на кислород и азот.

Из-за своей криогенной природы ЖК может вызвать хрупкость материалов , которые находятся с ним в соприкосновении. Жидкий кислород также является очень мощным окислительным агентом : органическое вещество быстро сгорает в его среде с большим выделением тепла . Более того, некоторые из этих веществ, будучи пропитанными ЖК имеют свойство непредсказуемо взрываться. Нефтепродукты часто демонстрируют такое поведение, включая асфальт .

ЖК является широко распространённым окислительным компонентом ракетных топлив обычно в комбинации с жидким водородом или керосином . Его использование обусловлено высоким удельным импульсом , который получается при применении этого окислителя в ракетных двигателях . Кислород - самый дешевый из применяемых компонентов ракетных топлив. Первое использование имело место в германской БР Фау-2 , позднее в американских БР «Редстоун » и РН «Атлас », а также в советской МБР Р-7 . ЖК активно использовался в ранних МБР, но более поздние версии этих ракет его не используют из-за криогенной природы и необходимости регулярной дозаправки для компенсации выкипания окислителя, что затрудняет быстрый запуск. Многие современные ЖРД используют ЖК в качестве окислителя, например RS-24 , РД-180 . В качестве уплотнительных прокладочных материалов в системах с жидким кислородом применяются материалы, не теряющие эластичности при низких температурах: паронит, фторопласты , отожженные медь и алюминий. Хранение и транспортировка больших количеств жидкого кислорода осуществляется в емкостях объемом от нескольких десятков до 1500 м³ из нержавеющей стали, снабженных теплоизоляцией. Наружный, защитный кожух теплоизоляции может выполняться и из углеродистой стали. Резервуары транспортных емкостей изготавливаются также из сплава АМц.Применение вакуумно-порошковой или экранно-вакуумной теплоизоляции позволяет снизить суточные потери кипящего продукта до уровня 0,1 - 0,5% (в зависимости от размеров емкости) и скорость повышения температуры переохлажденного - до 0,4 - 0,5 К в сутки. Транспортировка кипящего кислорода производится с открытым вентилем газосброса, а переохлажденного - при закрытом вентиле, с контролем давления не реже 2 раз в сутки; при повышении давления больше, чем на 0,02 МПа (изб.) вентиль открывается.

ЖК также активно использовался при изготовлении взрывчатки «Оксиликвит », но сейчас она редко используется из-за большого количества инцидентов и несчастных случаев.


Wikimedia Foundation . 2010 .

Смотреть что такое "Жидкий кислород" в других словарях:

    жидкий кислород - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN liquid oxygenLOX … Справочник технического переводчика Википедия

    O (oxygenium), химический элемент VIA подгруппы периодической системы элементов: O, S, Se, Te, Po член семейства халькогенов. Это наиболее распространенный в природе элемент, его содержание составляет в атмосфере Земли 21% (об.), в земной коре в… … Энциклопедия Кольера

    А; м. Химический элемент (O), газ без цвета и запаха, входящий в состав воздуха, необходимый для дыхания и горения и образующий в соединении с водородом воду. ◊ Перекрыть кислород кому л. Создать невыносимые условия жизни, работы. ◁ Кислородный,… … Энциклопедический словарь

    Кислород / Oxygenium (Oxygen)(O) Атомный номер 8 Внешний вид простого вещества газ без цвета, вкуса и запаха голубоватая жидкость (при низких температурах) Свойства атома Атомная масса (молярная масса) 15,9994 а. е. м. (г/моль) … Википедия

    КИСЛОРОД - КИСЛОРОД, самый легкий элемент VI группы периодической системы Менделеева, симв. О, порядковый номер 8. К. газ без цвета, запаха и вкуса. Изотопов не имеет. Ат. в. 16,000, мол. в. 32,000. Уд. в. К. по отношению к воздуху 1,10535; при 0° и 760 … Большая медицинская энциклопедия

    Кислород жидкий - жидкость голубого цвета, без запаха, не пожаровзрывоопасна, не горюча, но является сильным окислителем. Пропитанные жидким кислородом горючие пористые материалы (асфальт, пенополистирол, пенополиуретан, дерево и др.) образуют взрывчатые вещества… … Официальная терминология

  • Жи́дкий кислоро́д (ЖК, англ. Liquid oxygen, LOX) - жидкость бледно-синего цвета, которая относится к сильным парамагнетикам. Является одним из четырёх агрегатных состояний кислорода. Жидкий кислород обладает плотностью 1,141 г/см³ и имеет умеренно криогенные свойства с точкой замерзания 50,5 K (−222,65 °C) и точкой кипения 90,188 K (−182,96 °C). Жидкий кислород активно используется в космической и газовой отраслях, при эксплуатации подводных лодок, широко используется в медицине. Обычно промышленное получение основывается на фракционной перегонке воздуха. Коэффициент расширения (англ. expansion ratio) кислорода при смене жидкого агрегатного состояния на газообразное составляет 860:1 при 20 °C, что иногда используется в системах снабжения кислородом для дыхания в коммерческих и военных самолётах.

    Основным и практически неисчерпаемым источником получения жидкого кислорода является атмосферный воздух: производится сжижение воздуха и последующее разделение его на кислород и азот.

    Из-за своей криогенной природы жидкий кислород может вызвать хрупкость материалов, которые находятся с ним в соприкосновении. Жидкий кислород также является очень мощным окислительным агентом: органическое вещество быстро сгорает в его среде с большим выделением тепла. Более того, некоторые из этих веществ, будучи пропитанными жидким кислородом имеют свойство непредсказуемо взрываться. Нефтепродукты часто демонстрируют такое поведение, включая асфальт.

    Жидкий кислород является широко распространённым окислительным компонентом ракетных топлив обычно в комбинации с жидким водородом или керосином. Его использование обусловлено высоким удельным импульсом, который получается при применении этого окислителя в ракетных двигателях. Кислород - самый дешевый из применяемых компонентов ракетных топлив. Первое использование имело место в германской БР Фау-2, позднее в американских БР «Редстоун» и РН «Атлас», а также в советской МБР Р-7. Жидкий кислород активно использовался в ранних МБР, но более поздние версии этих ракет его не используют из-за криогенной природы и необходимости регулярной дозаправки для компенсации выкипания окислителя, что затрудняет быстрый запуск. Многие современные ЖРД используют ЖК в качестве окислителя, например RS-24, РД-180.

    В качестве уплотнительных прокладочных материалов в системах с жидким кислородом применяются материалы, не теряющие эластичности при низких температурах: паронит, фторопласты, отожженные медь и алюминий. Хранение и транспортировка больших количеств жидкого кислорода осуществляется в ёмкостях объёмом от нескольких десятков до 1500 м³ из нержавеющей стали, снабженных теплоизоляцией. Наружный, защитный кожух теплоизоляции может выполняться и из углеродистой стали. Резервуары транспортных ёмкостей изготавливаются также из сплава АМц. Применение вакуумно-порошковой или экранно-вакуумной теплоизоляции позволяет снизить суточные потери кипящего продукта до уровня 0,1 - 0,5 % (в зависимости от размеров ёмкости) и скорость повышения температуры переохлажденного - до 0,4 - 0,5 К в сутки. Транспортировка кипящего кислорода производится с открытым вентилем газосброса, а переохлажденного - при закрытом вентиле, с контролем давления не реже 2 раз в сутки; при повышении давления больше, чем на 0,02 МПа (изб.) вентиль открывается.

    Жидкий кислород также активно использовался при изготовлении взрывчатки «Оксиликвит», но сейчас она редко используется из-за большого количества инцидентов и несчастных случаев.

    Для объяснения отклонения парамагнетических свойств жидкого кислорода от закона Кюри американским физикохимиком Г. Льюисом в 1924 году была предложена молекула тетракислорода (англ. tetraoxygen) (O4). На сегодняшний день теория Льюиса считается лишь частично верной: компьютерное моделирование показывает, что хотя в жидком кислороде не образуется стабильных молекул O4, молекулы O2 на самом деле имеют тенденцию ассоциировать в пары с противоположными спинами, которые формируют временные объединения O2-O2.

    Жидкий азот имеет более низкую точку кипения 77 K (−196 °C) и устройства, которые содержат жидкий азот могут конденсировать кис

Жидкий кислород имеет голубоватый, небесный цвет. Аналогия с цветом неба неслучайна: в воздухе содержится 21% этого газа.
Переход из газообразного в жидкое состояние происходит при охлаждении до -119 °С и сжатии до 50 атмосфер.

В промышленных масштабах жидкий кислород используется для получения больших объемов газа в металлургии, медицине и пищевой промышленности.

Подразделяется на технический и медицинский.

Выгоды использования жидкого кислорода

  1. Отсутствие расходов на обслуживание и эксплутацию баллонного парка: покупку, хранение, учет, ремонт, доставку.
  2. Снижение рисков, связанных с безопасностью работы.
  3. Удобство и простота эксплуатации, обслуживания.
  4. Возможность транспортировать по трудопроводам при низких температурах окружающей среды.

Наши преимущества

Собственное производство
«Диоксид» – ведущий в России завод-производитель технических газов, криогенных жидкостей и высокотехнологичного криогенного оборудования с 2005 года. За это время мы накопили колоссальный опыт, полностью наладили и довели до автоматизации процессы, связанные с поставками криогенных жидкостей нашим клиентам. Все это позволяет нашим клиентам приобретать качественную продукцию на выгодных условиях в сжатые сроки.

Оперативная доставка
Нами разработана отлаженная система доставки криогенных жидкостей специализированным транспортом по России и странам СНГ.
Доставка осуществляется в удобное для вас время транспортом собственного автомобильного парка, с соблюдением всех правил перевозки.

Гарантия высокого качества
Качество продукции подтверждено паспортом и проходит проверку на соответствие ГОСТ в лаборатории «Диоксид».

Комплексный подход
Вы можете приобрести из наличия или оформить под заказ оборудование, необходимое при работе с криогенными жидкостями: сосуды Дьюара, металлорукава высокого давления, установки для газификации, емкости для хранения и транспортировки криогенных жидкостей, установки для обезжиривания резурвуаров, испарители, газовые рампы. Сервисный центр «Диоксид» выполняет ремонтно-профилактические работы по обслуживанию криогенного оборудования.


Чтобы жидкий кислород при хранении не терял параметров чистоты, эксперты рекомендуют проводить обезжиривание резервуаров не менее 1 раза в год. УОР – установка обезжиривания резервуаров – это то, что вам нужно, если у вас собственный большой парк емкостей. Это ваша независимость от сервисных компаний.

Полезная информация

Жидкий кислород может вызвать хрупкость материалов, которые находятся с ним в соприкосновении. Он также является очень мощным окислительным агентом: органическое вещество быстро сгорает в его среде с большим выделением тепла. Более того, некоторые из органических веществ, будучи пропитанными жидким кислородом, имеют свойство непредсказуемо взрываться, при наличии масляной среды.

Жидкий кислород магнитится, вещество можно переместить с помощью сильного магнита.

Сочетание жидких кислорода и водорода образуют ракетное топливо. А пропитав жидким кислородом торф или опилки, можно получить взрывчатку.

Хранение и транспортировка жидкого кислорода

Для хранения и перевозки, в зависимости от перевозимых объемов и задач, используются 3 вида емкостей, где главную роль выполняет качественная экранно-вакуумная изоляция. Как и на газовых баллонах, сосуд имеет окраску и надпись, соответствующую хранимому продукту. В случае, если необходимо использовать емкость под другую жидкость, то перед наполнением проводят комплекс работ. Например, чтобы наполнить кислород в емкость, ранее используемую под азот, внутренние полости и испаритель обезжиривают.

Криоцилиндры удобно и выгодно использовать на производствах с месячным расходом технических газов свыше 50 баллонов. Ёмкости выпускаются объемом от 175 до 1000 литров.

Внутренняя оболочка криоцилиндров выполнена из нержавеющей стали и не вступает в реакции с газами, а значит, что обеспечивает чистоту продукта.

Криоцилиндр емкостью 1000 литров по объёму газов заменяет около 136 баллонов 40 л. соответственно. Заправляя всего один криогенный цилиндр, минимизируются расходы, связанные с доставкой, заправкой, ремонтом баллонов. Также освобождаются производственные площади, ранее предназначенные для хранения баллонного парка.

Кислород химический элемент, атомный номер 8, атомная масса 15,9994. Обычно концентрация кислорода (в виде молекул O 2) в атмосфере на уровне моря составляет по объему 21%. Кислород немного тяжелее воздуха, вес 1 м 3 кислорода при 0° и 760 мм рт. ст. равен 1,43 кг. Плотность по отношению к воздуху 1,1. При температуре -182,97°C и давлении 760 мм рт. ст. кислород превращается в голубоватую легко подвижную жидкость, энергично испаряющуюся при нормальной температуре. При этом занимаемый газом объем уменьшается примерно в 850 раз. При нагревании жидкий кислород снова превращается в газ. Вес 1 л жидкого кислорода при температуре -183°C равен 1,14 кг. Жидкий кислород при атмосферном давлении затвердевает при температуре -218,4°C и образует кристаллы голубоватого цвета. Химическая формула – O. В обычных условиях молекула кислорода двухатомная - O 2 .

Кислород при нормальных условиях (температуре и давлении) представляет собой прозрачный газ без запаха, вкуса и цвета. Не относится к горючим газам, но способен активно поддерживать горение.

По химической активности среди неметаллов кислород занимает второе место после фтора.

Все элементы, кроме благородных металлов (платина, золото, серебро, родий, палладий и др.) и ( , ксенон, криптон и неон), вступают в реакцию с кислородом (окисление) и образовывают оксиды. Процесс окисления элементов, как правило, носит экзотермический (с выделением теплоты) характер. Также необходимо учитывать тот факт, что при повышении температуры, давления или использовании катализаторов – скорость реакции окисления резко возрастает.

История открытия кислорода

Открытие кислорода приписывают Джозефу Пристли (Joseph Priestley). У него была лаборатория, оборудованная приборами для собирания газов. Пристли испытывал физиологическое действие кислорода на себе и на мышах. Он устанавливал, что после вдыхания кислорода некоторое время ощущается приятная легкость. Мыши в герметически закрытой банке с воздухом задыхаются быстрей, чем в банке с кислородом. Поскольку Пристли был приверженцем флогистонной теории он так и не узнал, что оказалось у него в руках. Он только описал кислород, даже не догадываясь, что он описал. Открыл кислород и дал ему имя Антуан Лоран Лавуазье (Antoine Laurent de Lavoisier).

Лавуазье, поставил свой знаменитый опыт, продолжавшийся 12 дней.

Он нагревал ртуть в реторте. При кипении образовывалась ее красная окись. Когда реторту охладили, оказалось, что воздуха в ней убыло почти на 1/6 его объема, а остаток ртути весил меньше, чем перед нагревом. Но когда разложили окись ртути сильным прокаливанием, все вернулось: и недостача ртути, и «исчезнувший» кислород.

Впоследствии Лавуазье установил, что этот газ входит в состав азотной, серной, фосфорной кислот. Он ошибочно полагал, что кислород обязательно входит в состав кислот, и поэтому назвал его «оксигениум», что значит «рождающий кислоты». Теперь хорошо известны кислоты, лишенные кислорода (например: соляная, сероводородная, синильная и др.).

Получение кислорода

Кислород получают тремя способами:

  • разделение воздуха путем низкотемпературной ректификации (глубокого охлаждения);
  • разложение воды путем электролиза (пропускание электрического тока);
  • химический способ.

Из атмосферного воздуха кислород получают методом глубокого охлаждения, как побочный продукт при получении азота. Данный способ мы рассмотрели в статье

Производство кислорода путем пропускания электрического тока через воду (электролиз воды) с попутным получением водорода мы рассматривали в статье

Химические способ получения малопроизводителен, а, следовательно, и неэкономичен, он не нашел широкого применения и используются в лабораторной практике.

Кислород газообразный технический и медицинский выпускают по . Хранят и транспортируют его в стальных баллонах под давлением 15 МПа. Кислородные окрашены в синий цвет с надписью черными буквами «КИСЛОРОД».

Жидкий кислород выпускается по . Кислород находится в жидком состоянии только при получении, хранении и транспортировке. Для газовой или газовой резки его необходимо снова превратить в газообразное состояние.

Где бы мы ни находились, нас всюду окружает кислород воздуха.

Почему же мы не замечаем и не чувствуем его? Кислород, азот, аргон и другие газы, входящие в состав воздуха, бесцветны и не имеют ни запаха, ни вкуса. Газообразный воздух нельзя ни видеть, ни ощущать.

Воздух из газообразного состояния можно перевести в жидкое. Одновременно с основной массой воздуха - азотом - в жидкое состояние перейдут кислород и большинство других газов, входящих в его состав.

Чтобы газообразный кислород превратить в жидкость, его нужно сжать до 50 атмосфер и охладить до -119°.

Жидкий кислород можно получить и при атмосферном давлении, но для этого нужно газообразный кислород охладить до температуры -183°. При более сильном охлаждении, до температуры -220°, жидкий кислород затвердевает и превращается в снегообразную массу.

Если на некоторое время в жидкий кислород поместить кусочек резины, она потеряет свою эластичность и под ударом разлетится на мелкие части.

Такую же хрупкость приобретает и цинковая пластинка, охлажденная в жидком кислороде до температуры -183°. Жидкая ртуть при такой температуре превращается в твердую массу, которую можно ковать, как свинец, а свинец приобретает способность звенеть, как бронзовый колокольчик.

Жидкий кислород имеет голубоватый цвет. Его можно легко переливать из сосуда в сосуд. При переливании жидкий кислород «парит». Но это не пары кислорода, а пары воды. Жидкий кислород, испаряясь, поглощает много тепла из окружающего воздуха. Воздух сильно охлаждается, и влага, находящаяся в воздухе, конденсируется, образуя туман. Этот туман и создает впечатление пара, исходящего из самой жидкости.

Температура кипения жидкого кислорода равна -183°.

Если фарфоровый стакан с жидким кислородом вынести зимой на мороз 30-40°, он будет кипеть более бурно, чем вода на самом сильном огне газовой плиты.

При комнатной температуре испарение жидкого кислорода идет еще энергичнее, и он быстро переходит в газообразное состояние.

Чтобы использовать жидкий кислород, его необходимо сохранить. Как же заставить эту бурно кипящую жидкость не так быстро испаряться?

Для этого служат специальные сосуды, в которых легко удается «укротить» эту быстро испаряющуюся жидкость.

Сосуд для хранения жидкого кислорода представляет собой цилиндр с двойными стенками. Внутренние стороны стенок обычно покрывают тонким слоем серебра. Воздух между стенками сосуда выкачивается.

Разреженные газы плохо проводят тепло, а зеркальная поверхность серебра хорошо отражает его. Таким образом, жидкий кислород, который находится в сосуде, изолирован от внешнего тепла, что обеспечивает сохранение жидкого кислорода в течение одних-двух суток.

При испарении жидкого кислорода объем его увеличивается почти в 800 раз. Из кубического сантиметра жидкого кислорода образуется около 800 кубических сантиметров газообразного.

Хранить жидкий кислород в закрытых сосудах опасно: внутри сосуда может образоваться большое давление, приводящее к взрыву. Поэтому сосуды для хранения жидкого кислорода сверху открыты. Воздух, находящийся над жидкостью, сильно охлаждается и предохраняет кислород от наружного тепла, замедляя дальнейшее испарение.

Для перевозки небольших количеств жидкого кислорода используют металлические емкостью 15-25 литров.

Металлические сосуды состоят из двух шаров или цилиндров, вставленных друг в друга. Внутренний шар или цилиндр имеет высокое и узкое горло, через которое сосуд заполняется жидким кислородом. Горло всегда остается открытым. Из пространства между стенками сосуда воздух выкачан, и создан высокий вакуум, то есть сильное разрежение.

Чтобы поддержать высокий вакуум, часть пространства между стенками заполняется силикагелем, способным при низкой температуре поглощать количество газа в сотни раз больше своего собственного объема. Если через стенки или через места спайки со временем просочится небольшая часть воздуха, он поглотится силикагелем и разрежение не уменьшится. Высокий вакуум обеспечивает постоянную изоляцию сосуда от внешнего тепла и дает возможность в течение двух и более суток сохранять в нем жидкий кислород. Такие сосуды обычно помещают в железные цилиндры.

Пространство между сосудом и наружным цилиндром заполняют теплоизоляционным материалом. Для переноски на наружном цилиндре имеются ручки.

Большие количества жидкого кислорода перевозятся по железной дороге и автотранспортом в специальных цистернах или танках. Они хорошо изолированы от внешнего тепла. Емкость транспортных танков различна: от 1 тысячи до 10 тысяч литров. Цистерны, в которых жидкий кислород перевозят по железной дороге, вмещают до нескольких десятков тонн.

Жидкий кислород можно получить из жидкого воздуха, который образуется при низких температурах и высоком давлении.

Высокое давление создают в машинах, которые называются компрессорами. Их приводят в движение электродвигатели.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .