Схемы подключения электродвигателя к электропитанию. Соединение звездой и треугольником обмоток электродвигателя Как собрать схему на электродвигатель звезда треугольник

Как подключить двигатель по схеме “Звезда-Треугольник”

По схеме подключения двигателей “звезда-треугольник” написано предостаточно. Но в каждой статье есть неточности и ошибки. Авторы просто переписывают друг у друга. Подозреваю, что большинство из них ни разу в жизни не подключали двигатель, а название схемы для них – лишь геометрические фигуры. Поэтому решил последовать народной мудрости “хочешь сделать хорошо – сделай это сам”, и написать эту статью.

Рассказываю, полагаясь на свой опыт и понимание вопроса. Как всегда, буду давать теорию и показывать, как это выглядит на практике.

Для начала, если кто совсем не в теме, из какой области знаний вообще это всё? Речь идёт об одном из распространенных способов подключения трехфазного асинхронного электродвигателя, при котором обмотки двигателя сначала подключаются к питающей сети по схеме “звезда”, а потом – по схеме “треугольник”. В молодых пытливых умах сразу возникнет вопрос – “Зачем это нужно?” ОК.

Зачем нужна схема “Звезда – Треугольник”?

Корень проблемы кроется в пусковых токах и чрезмерных нагрузках, которые испытывает двигатель, когда на него подают питание напрямую. Да что там двигатель – весь привод при пуске скрежещет и содрогается!

ВАЖНО! Если дочитали досюда, . Там очень подробно о том, откуда они берутся, как их узнать, посчитать и измерить.

Особенно это критично там, где нет понижающей передачи – редуктора или ремня на шкивах.

Особенно это важно там, где на валу двигателя насажено что-то массивное – крыльчатка или центрифуга.


Подписывайтесь! Будет интересно.


Особенно это значимо там, где мощность двигателя – более 5 кВт, а скорость вращения большая (3000 об/мин).

Вот такие кабанчики не любят, когда их включают в сеть напрямую

Привод отличается от двигателя, как колесо от покрышки и как .

Так вот, для того, чтобы уменьшить мощность на валу двигателя во время пуска, его включают сначала на пониженное напряжение, он не спеша разгоняется, а потом врубают по полной, на номинальную мощность. Реализуется это не изменением напряжения реостатами и трансформаторами, а более хитро. Но по порядку.

Схемы “Звезда” и “Треугольник”

У любого классического трехфазного двигателя есть три обмотки статора. Они могут иметь разную конфигурацию в пространстве, дополнительные выводы, но их три.

Схема обмоток статора с выводами для трехфазного асинхронного двигателя

Как подключить все эти 6 выводов, если у нашего источника питания всего 3 фазы?

Короче, вот простейшая схема:

Схема управления “Звезда-Треугольник” с реле времени. Простейшая теоретическая

В контактах с временной задержкой все постоянно путаются. У меня – правильно)

Что такое КМ1, КМ2, КМ3, вы уже знаете, а вот КА1 – это реле времени с задержкой при включении. Реле может быть любым, хоть электронным, хоть пневматическим типа ПВЛ. Главное, чтобы контакты переключались из исходного состояния через время задержки после подачи питания на КА1.

Подавать питание на схему (запускать двигатель) можно любыми способами – хоть тумблером, хоть .

Минус такой схемы – есть опасность конфликта между КМ2 и КМ3. Поэтому я не очень люблю такую схему, т.к. она работает “на грани”, и её безаварийность очень зависит от механики и конструкции контакторов. Из-за этого могут подгорать контакты, а может и выбивать вводной автомат. Поэтому обязательно необходима блокировка (электрическая и желательно механическая):

Практическая схема “Звезда-треугольник” с блокировкой

Блокировка реализована на НЗ контактах, подробно об этом и не только . Между катушками показана механическая блокировка, не путать со схемой “Треугольник”!

Это реальная схема, можно её применять. Если что не понятно – спрашивайте.

Кстати, вместо КА1.1 можно поставить НО контакт с задержкой Отключения. То есть, включается сразу после подачи питания, выключается – через время. Но для этого нужно два отдельных реле времени с разными принципами работы, которые должны быть синхронизированы для гарантированной паузы. Именно так и реализуется в специализированных реле времени “Звезда-Треугольник”.

Да, ещё замечание. Иногда включение питания общего контактора КМ1 реализуют не напрямую, а через НО контакт “Звезды” КМ2, затем КМ1 становится на самоподхват через свой НО контакт. Это необходимо для дополнительной проверки работоспособности реле времени КА1.

Временные диаграммы работы схемы “Звезда-Треугольник”

С привязкой к моей схеме управления, диаграммы включения контакторов:

Временные диаграммы схемы управления звезда-треугольник

Тут вроде всё понятно, но есть одно важное замечание. Ещё раз. Между зеленой и красной областями обязательно нужен небольшой зазор (пауза). Его может не быть (пауза = 0), но эти области могут налазить друг на друга, если используются контакторы с катушкой постоянного тока (=24 VDC). В особенности при использовании обратновключенного диода (а он обязателен!), время выключения может быть больше времени включения в 7-10 раз!

Это я к тому, что однажды мучался с такой схемой, в ней выбивал периодически вводной автомат. Поставили спец.реле с паузой, проблема была решена!

Реальный пример схемы

Вот реальный пример такой схемы на электронном реле времени:

Фото схемы звезда-треугольник с управлением на таймере и гальванической развязкой на трансформаторе.

Слева направо в нижнем ряду: КМ1, КМ2, КМ3, КА1.

А вот пример схемы с управлением от контроллера:

Звезда-треугольник, компрессор, управление от программы контроллера

Видео, как щёлкают контакторы в этой схеме:

Вот как красиво оформили схему немцы в своём компрессоре:

Схема компрессора Звезда – Треугольник

На входе схемы – три провода, на выходе – шесть. Всё сходится)

Как переключить схему двигателя в “Звезду” и в “Треугольник” вручную

Если не нужна никакая автоматика, а двигатель работает постоянно в “Звезде” или в “Треугольнике”, то используя рожковый ключ, можно переключить схему соединения обмоток вручную.

Шильдик двигателя 220 / 380 В 0,37 кВт

На оборотной стороне крышки борно, как обычно, приведена схема:

Схема подключения 220 – 380 на крышке двигателя

Двигатель питался напрямую от трехфазной сети 380 В через контактор и был собран в “Звезду:

Клеммы двигателя в подключены в схеме “Звезда”

Откручиваем гайки М4, снимаем перемычки и провода питания:

Разбираем схему, откидываем провода

Собираем схему в треугольник, на пониженное напряжение 220 В:

Собираем треугольную схему на 220 В

Переделка понадобилась в связи с тем, что нужно изменить скорость вращения двигателя, а для этого применить частотник. А частотники на такую мощность, как правило, однофазные. В результате – поехали!

Кстати, по частотникам планирую цикл статей, подписывайтесь !

Особенность работы в “Звезде”

В соответствии с ГОСТ 28173 (МЭК 60034-1) двигатели могут эксплуатироваться при отклонении напряжения ± 5 % или
отклонении частоты ± 2 %. При этом параметры двигателей могут отличаться от номинальных, а превышения температуры обмоток могут быть более предельного по ГОСТ 28173 (МЭК 60034-1) на 10 °С.

К чему это я? Дело в том, что при пуске, когда двигатель работает в “Звезде”, он работает не в режиме (напряжение отличается на 70%!), что может привести к его перегреву, если это будет длиться долго. Будьте внимательны, защищайте двигатель от перегрева и перегрузки! Но это уже совсем другая история)

Видео

Для работы электрического прибора, двигателя, трансформатора в трехфазной сети необходимо соединить обмотки по определенной схеме. Наиболее распространенными схемами соединения являются треугольник и звезда, хотя могут применяться и другие способы соединения.

Что представляет собой соединение обмоток звездой?

Трехфазный двигатель или трансформатор имеет 3 рабочих , независимых друг от друга обмоток. Каждая обмотка имеет два вывода — начало и конец. Соединение «звезда» подразумевает собой, что все концы трех обмоток соединяются в один узел, часто называемый нулевой точкой. Отсюда выходит и понятие — нулевая точка.

Начало каждой обмотки соединяются непосредственна с фазами питающей сети. Соответственно начало каждой обмотки соединяется с одной из фаз А, В, С. Между любыми двумя началами обмоток прилаживается фазное напряжение питающей сети, зачастую 380 или 660 В.

Что представляет собой соединение обмоток в треугольник?

Соединение обмоток в треугольник заключается в соединении конца каждой обмотки с началом следующей. Конец первой обмотки, соединяется с началом второй. Конец второй — с начало третей. Конец третей обмотки создает электрический контур, поскольку замыкает электрическую цепь.


При таком соединении к каждой обмотки прилаживается линейное напряжение, обычно равное 220 или 380 В. Такое соединение физически реализуется с помощью металлических перемычек, которые должны быть предусмотрены заводской комплектацией электрического оборудования.

Разница между соединением обмотки в треугольник и звезду

Основная разница заключается в том, что, используя одну питающую сеть, можно достигать разных параметров электрического напряжения и тока в приборе или аппарате. Конечно, данные способы соединения отличаются реализацией, но важна именно физическая составляющая отличия.

Наиболее часто применяется соединение обмоток в звезду, что объясняется щадящим режимом для электрического привода или трансформатора. При соединении обмоток в звезду, ток протекающий по обмоткам имеет меньшие значение нежели при соединении в треугольник. В тот момент, как напряжение больше на величину корня из 1,4.

Применение способа соединения треугольник, зачастую используется в случаях мощных механизмов и больших пусковых нагрузок. Имея большие показатели тока, протекающего по обмотки, двигатель получает большие показатели ЕДС самоиндукции, что в свою очередь гарантирует больший вращающий момент. Имея большие пусковые нагрузки и одновременно используя схему соединения звезда, можно нанести урон двигателю. Это связано с тем, что двигатель имеет меньшие значение тока, что приводит к меньшим показателям величины вращающегося момента.

Момент пуска такого двигателя и выход его на номинальные параметры может быть продолжительным, что может привести к тепловому воздействию тока, которые во время коммутации может превышать номиналы тока в 7-10 раз .

Преимущества соединения обмоток в звезду

Основные преимущества соединения обмоток в звезду заключаются в следующем:

  • Понижения мощности оборудования с целью повышения надежности.
  • Устойчивый режим работы.
  • Для электрического привода такое соединение дает возможность плавного пуска.

Некоторое электрическое оборудование, которое не предназначены для работы на других способах соединения, имеет внутренне соединение концов обмоток. На клеммник выводится лишь три вывода, которые представляют собой начало обмоток. Такое оборудование легче в подключении и может монтироваться в отсутствии грамотных специалистов.

Преимущества соединения обмоток в треугольник

Основными преимуществами соединения обмоток в треугольник являются:

  1. Повышения мощности оборудования.
  2. Меньшие пусковые токи.
  3. Большой вращающийся момент.
  4. Увеличенные тяговые свойства.

Оборудование с возможностью переключения типа соединения со звезды на треугольник

Зачастую электрическое оборудование имеет возможность работать как на звезде, так и на треугольнике. Каждый пользователь должен самостоятельно определить необходимость соединения обмоток в звезду или треугольник.

В особо мощных и сложных механизмах, может применяться электрическая схема с комбинированием треугольника и звезды . В таком случае, в момент пуска, обмотки электрического двигателя соединяются в треугольник. После выхода двигателя на номинальные показатели, с помощью релейно-контакторной схемы треугольник переключается на звезду. Таким способом достигается максимальная надежность и продуктивность электрической машины, без риска нанести ей урон или вывести её из строя.

Посмотрите так-же интересное видео на эту тему:

→ Подключение электродвигателя

Для чего трехфазные электродвигатели подключают к напряжению по - разному соединив их обмотки? Мы иногда слышим в разговоре между электриками про соединения звездой и треугольником. А нельзя ли обойтись без этих разных электрических схем подключения?
Оказывается, можно соединить двигатели звездой, а точнее по "схеме звезда", но в этом случае для разгона самого двигателя потребуется больше времени и он будет отдавать меньшую мощность, а можно включать по схеме "треугольник" - двигатель при включении (разгоне) потребляет больше энергии, происходит бросок тока, а в сети падает напряжение, вот поэтому и комбинируют между собой эти схемы включения.

Схемы подключения электродвигателя. Звезда - треугольник

Применяются основные способы подключения к сети трёхфазных электродвигателей: "подключение звездой" и "подключение треугольником".
При соединении трёхфазного электродвигателя звездой, концы его статорных обмоток соединяются вместе, соединение происходят в одной точке, а на начала обмоток подаётся трехфазное напряжение (рис 1).
При соединении трёхфазного электродвигателя по схеме подключения "треугольником" обмотки статора электродвигателя соединяются последовательно таким образом что конец одной обмотки соединяется началом следующей и так далее (рис 2).

Клеммные колодки электродвигателей и схемы соединения обмоток:

Схема включение двигателя (насоса) звезда-треугольник.

Не вдаваясь в технические и подробные теоретические основы электротехники необходимо сказать, что электродвигатели у которого обмотки, соединенные звездой работают плавнее и мягче, чем электродвигатели с соединенные обмотками в треугольником, необходимо отметить, что при соединении обмоток звездой электродвигатель не может развить полную мощность. При соединении обмоток по схеме треугольник электродвигатель работает на полную паспортную мощность (что составляет в 1,5 раз больше по мощности, чем при соединении звездой), но при этом имеет очень большие значения пусковых токов.
В связи с этим целесообразно (особенно для электродвигателей с большей мощностью) подключение по схеме звезда - треугольник; первоначально запуск осуществляется по схеме звезда, после этого (когда электродвигатель «набрал обороты»), происходит автоматическое переключение по схеме треугольник.
Схема управления:

Еще вариант схемы управления двигателем
Подключение напряжения питания через контакт NC (нормально закрытый) реле времени К1 и контакт NC К2, в цепи катушки пускателя К3.
После включения пускателя К3, своими нормально-замкнутыми контактами размыкает цепи катушки пускателя К2 контактами К3 (блокировка случайного включения) и замыкает контакт К3, в цепи питания катушки магнитного пускателя К1, который совмещен с контактами реле времени.
При включении пускателя К1 происходит замыкание контактов К1 в цепи катушки магнитного пускателя К1 и одновременно включается реле времени, размыкается контакт реле времени К1 в цепи катушки пускателя К3, замыкает контакт реле времени К1 в цепи катушки пускателя К2.
Отключение обмотки пускателя К3, замыкается контакт К3 в цепи катушки магнитного пускателя К2. После включение пускателя К2, размыкает своими контактами К2 в цепи катушки питания пускателя К3.

На начала обмоток U1, V1 и W1 через силовые контакты магнитного пускателя К1 подаётся трехфазное напряжение. При срабатывании магнитного пускателя К3 с помощью его контактов К3, происходит замыкание, соединяя концы обмоток U2, V2 и W2 между собой обмотки двигателя соединены звездой.
Через некоторое время срабатывает реле времени, совмещённое с пускателем К1, отключая пускатель К3 и одновременно включая К2, замыкаются силовые контакты К2 и происходит подача напряжение на концы обмоток электродвигателя U2, V2 и W2. Таким образом электродвигатель включается по схеме треугольник.
Для запуска двигателей по схеме звезда-треугольник разными производителями выпускаются так называемые пусковые реле, название они могут иметь разные "Пусковые реле времени" , реле "старт-дельта" и др., но назначение у них одно и тоже:
РВП-1-15, ВЛ-32М, ВЛ-163, CRM-2T ELKO Чехия.

При подаче напряжения питания на реле, начинается отсчёт времени разгона t1 и через контакты пускового реле 15-18 включается пускатель "звезда" (обмотки двигателя включены по схеме "звездой"). По окончании времени разгона t1 контакты 15-18 размыкаются, выключается пускатель "звезда", и через время паузы t2 замыкаются контакты 25-28 встроенного электромагнитного реле, включающие пускатель "треугольник" (обмотки двигателя включены по схеме "треугольник").
Времена T1, T2 устанавливаются органами управления реле, время паузы Т2 имеет фиксированное значение, обычно 20,30,40,80 мс, оно переключается дискретно.
ИТОГ-общее:
Для снижения пусковых токов запускать двигатель необходимо в следующей последовательности: сначала включенным по схеме "звезда" на пониженных оборотах, далее переключаться на "треугольник".
Запуск сначала треугольником создает максимальный момент, а уже переключение на звезду (пусковой момент в 2 раза меньше) с дальнейшей работой в номинальном режиме когда электродвигатель «набрал обороты»), происходит автоматическое переключение на схему треугольник, стоит учитывать какая нагрузка на валу перед запуском, ведь вращающий момент при звезде ослаблен, поэтому такой способ запуска вряд ли подойдет для очень загруженных двигателей, может выйти из строя.

В итоге что дает для двигателя подключение звездой или треугольником? При соединении звездой пусковой ток электродвигателя уменьшается в 1,73·1,73 = 3 раза.

Плавный пуск при использовании УПП

На смену традиционным схемам включения для уменьшения пускового тока широкое распространение получили так называемые устройства плавного пуска - УПП.
В чем отличие и преимущество УПП?

Двигатели асинхронного типа имеют целый набор безусловных достоинств. Среди плюсов асинхронных двигателей в первую очередь хочется назвать высокую производительность и надежность их эксплуатации, совсем небольшую стоимость и неприхотливость ремонта и обслуживания двигателя, а также способность переносить достаточно высокие перегрузки механического типа. Все эти достоинства, которыми обладают асинхронные двигатели, обусловлена тем, что данный тип двигателей имеет очень простую конструкцию. Но, не смотря на большое число достоинств, асинхронным двигателям присущи и их определенные отрицательные моменты.

В практической работе принято использовать два основных способа подключения трёхфазных электродвигателей к электросети. Эти способы подключения носят названия: "подключение методом звезды" и "подключение методом треугольника".

Когда выполняется соединение трёхфазного электродвигателя по типу подключения "звезда", тогда соединение концов обмоток статора электродвигателя происходит в одной точке. При этом трехфазное напряжение подают на начала обмоток. Ниже, на рисунке 1, наглядно проиллюстрирована схема подключения асинхронного двигателя "звездой".

Когда выполняется соединение трёхфазного электродвигателя по типу подключения "треугольник", тогда обмотки статора электродвигателя присоединяются последовательно друг за другом. При этом начало последующей обмотки соединяется с концом предыдущей обмотки и так далее. Ниже, на рисунке 2, наглядно проиллюстрирована схема подключения асинхронного двигателя "треугольником".


Если не вдаваться в теоретические и технические основы электротехники, то можно принять на веру тот факт, что работа тех электродвигателей, у которых обмотки подключены по схеме "звезда", является более мягкой и плавной, чем у электродвигателей, обмотки которых соединены по схеме "треугольник". Но тут же стоит обратить внимание на ту особенность, что электродвигатели, обмотки которых подключены по схеме "звезда", не способны развить полную мощность, заявленную в паспортных характеристиках. В том случае, если соединение обмоток выполнено по схеме "треугольник", то электродвигатель работает на максимальную мощность, которая заявлена в техническом паспорте, но при этом имеют место быть очень высокие значения пусковых токов. Если произвести сравнение по мощности, то электродвигатели, чьи обмотки будут соединены по схеме "треугольник", способны выдавать мощность в полтора раза выше, чем те электродвигатели, обмотки которых подключены по схеме "звезда".

Основываясь на всем вышеописанном, для того, чтобы снизить токи при запуске, целесообразно применять подключение обмоток по комбинированной схеме "треугольник-звезда". Особенно такой тип подключения актуален для электродвигателей, обладающих большей мощностью. Таким образом, в связи с соединением по схеме "треугольник- звезда" изначально запуск выполняется по схеме «звезда», а после того, как электродвигатель «набрал обороты», выполняется переключение в автоматическом режиме по схеме «треугольник».

Схема управления электродвигателем представлена на рисунке 3.


Рис. 3 Схема управления

Еще один вариант схемы управления электродвигателем заключается в следующем (рис. 4).


Рис. 4 Схема управления двигателем

На контакт NC (нормально закрытый) реле времени K1, а также на контакт NC реле K2, в цепи катушки пускателя КЗ, подаётся напряжение питания.

После того, как произойдет включение пускателя КЗ, нормально закрытыми контактами КЗ расцепляются цепи катушки пускателя K2 (запрет случайного включения). Контакт КЗ в цепи питания катушки пускателя K1 замыкается.

Когда запускается магнитный пускатель K1, в цепи питания его катушки замыкаются контакты K1. Реле времени включается в то же самое время, контакт этого реле K1 в цепи катушки пускателя КЗ размыкается. А в цепи катушки пускателя K2 – замыкается.

При отключении обмотки пускателя КЗ, замкнётся контакт КЗ в цепи катушки пускателя K2. После того, как пускатель K2 включится, он размыкает своими контактами K2 цепь питания катушки пускателя КЗ.

Трёхфазное напряжение питания подаётся на начало каждой из обмоток W1, U1 и V1 с помощью силовых контактов пускателя K1. Когда срабатывает магнитный пускатель КЗ, тогда при помощи его контактов КЗ выполняется замыкание, посредством которого между собой соединяются концы каждой из обмоток электродвигателя W2, V2 и U2. Таким образом, выполняется подключение обмоток электродвигателя по схеме соединения "звезда".

Реле времени, объединенное с магнитным пускателем K1, сработает спустя определенное время,. При этом происходит отключение магнитного пускателя КЗ и одновременное включение магнитного пускателя K2. Таким образом силовые контакты пускателя K2 замкнутся и напряжение питания будет подано на концы каждой из обмоток U2, W2 и V2 электродвигателя. Иными словами, электродвигатель включается по схеме подключения "треугольник".

Для того, чтобы электродвигатель запустить по схеме соединения "треугольник-звезда", различные изготовители производят специальные пусковые реле. Данные реле могут носить разнообразные названия, например, реле "старт-дельта" или "пусковое реле времени", а также и некоторые другие. Но назначение всех этих реле заключается в одном и том же.

Типовая схема, выполненная с реле времени, предназначенном для запуска, то есть реле "треугольник-звезда", для осуществления управления запуска трехфазного электродвигателя асинхронного типа представлена на рисунке 5.


Рис.5 Типовая схема с пусковым реле времени (реле "звезда/треугольник") для управления запуском трехфазного асинхронного двигателя.

Итак, подытожим все вышеописанное. Для того, чтобы понизить пусковые токи осуществлять запуск электродвигателя требуется в определенной последовательности, а именно:

  1. сперва электродвигатель запускают на пониженных оборотах соединённым по схеме "звезда";
  2. затем электродвигатель соединяют по схеме "треугольник".

Первоначальный запуск по схеме "треугольник" создаст максимальный момент, а последующее соединение по схеме "звезда" (для которой в 2 раза меньше пусковой момент) с продолжением работы в номинальном режиме, когда двигатель «набрал обороты», произойдёт переключение на схему соединения "треугольник" в автоматическом режиме. Но не стоит забывать о том, какая нагрузка создается перед запуском на валу, так как вращающий момент при соединении по схеме "звезда" ослаблен. По этой причине маловероятно, что данный метод запуска будет приемлем для электродвигателей с высокой нагрузкой, так как они в таком случае могут потерять свою работоспособность.

Асинхронные трехфазные двигатели, а именно их, из-за широкого распространения, часто приходится использовать, состоят из неподвижного статора и подвижного ротора. В пазах статора с угловым расстоянием в 120 электрических градусов уложены проводники обмоток, начала и концы которых (C1, C2, C3, C4, C5 и C6) выведены в распределительную коробку. Обмотки могут быть соединены по схеме "звезда" (концы обмоток соединены между собой, к их началам подводится питающее напряжение) или "треугольник" (концы одной обмотки соединены с началом другой).

В распределительной коробке контакты обычно сдвинуты - напротив С1 не С4, а С6, напротив С2 - С4.

При подключении трехфазного двигателя к трехфазной сети по его обмоткам в разный момент времени по очереди начинает идти ток, создающий вращающееся магнитное поле, которое взаимодействует с ротором, заставляя его вращаться. При включении двигателя в однофазную сеть, вращающий момент, способный сдвинуть ротор, не создается.

Среди разных способов подключения трехфазных электродвигателей в однофазную сеть наиболее простой - подключение третьего контакта через фазосдвигающий конденсатор.

Частота вращения трехфазного двигателя, работающего от однофазной сети, остается почти такой же, как и при его включении в трехфазную сеть. К сожалению, этого нельзя сказать о мощности, потери которой достигают значительных величин. Точные значения потери мощности зависят от схемы подключения, условий работы двигателя, величины емкости фазосдвигающего конденсатора. Ориентировочно, трехфазный двигатель в однофазной сети теряет около 30-50% своей мощности.

Не все трехфазные электродвигатели способны хорошо работать в однофазных сетях, однако большинство из них справляются с этой задачей вполне удовлетворительно - если не считать потери мощности. В основном для работы в однофазных сетях используются асинхронные двигатели с короткозамкнутым ротором (А, АО2, АОЛ, АПН и др.).

Асинхронные трехфазные двигатели рассчитаны на два номинальных напряжения сети - 220/127, 380/220 и т.д. Наиболее распространены электродвигатели с рабочим напряжением обмоток 380/220В (380В - для "звезды", 220 - для "треугольника). Большее напряжение для "звезды", меньшее - для "треугольника". В паспорте и на табличке двигателей кроме прочих параметров указывается рабочее напряжение обмоток, схема их соединения и возможность ее изменения.

Обозначение на табличке А говорит о том, что обмотки двигателя могут быть подключены как "треугольником" (на 220В), так и "звездой" (на 380В). При включении трехфазного двигателя в однофазную сеть желательно использовать схему "треугольник", поскольку в этом случае двигатель потеряет меньше мощности, чем при подключении "звездой".

Табличка Б информирует, что обмотки двигателя подсоединены по схеме "звезда", и в распределительной коробке не предусмотрена возможность переключить их на "треугольник" (имеется всего лишь три вывода). В этом случае остается или смириться с большой потерей мощности, подключив двигатель по схеме "звезда", или, проникнув в обмотку электродвигателя, попытаться вывести недостающие концы, чтобы соединить обмотки по схеме "треугольник".

Если рабочее напряжение двигателя составляет 220/127В, то к однофазной сети на 220В двигатель можно подключить только по схеме "звезда". При подключении 220В по схеме "треугольник", двигатель сгорит.

Начала и концы обмоток (различные варианты)

Пожалуй, основная сложность подключения трехфазного двигателя в однофазную сеть заключается в том, чтобы разобраться в проводах, выходящих в распределительную коробку или, при отсутствии последней, просто выведенных наружу двигателя.

Самый простой случай, когда в имеющемся двигателе на 380/220В обмотки уже подключены по схеме "треугольник". В этом случае нужно просто подсоединить токоподводящие провода и рабочий и пусковой конденсаторы к клеммам двигателя согласно схеме подключения.

Если в двигателе обмотки соединены "звездой", и имеется возможность изменить ее на "треугольник", то этот случай тоже нельзя отнести к сложным. Нужно просто изменить схему подключения обмоток на "треугольник", использовав для этого перемычки.

Определение начал и концов обмоток . Дело обстоит сложнее, если в распределительную коробку выведено 6 проводов без указания об их принадлежности к определенной обмотке и обозначения начал и концов. В этом случае дело сводится к решению двух задач (Но прежде чем этим заниматься, нужно попробовать найти в Интернете какую-либо документацию к электродвигателю. В ней может быть описано к чему относятся провода разных цветов.):

  • определению пар проводов, относящихся к одной обмотке;
  • нахождению начала и конца обмоток.

Первая задача решается "прозваниванием" всех проводов тестером (замером сопротивления). Если прибора нет, можно решить её с помощью лампочки от фонарика и батареек, подсоединяя имеющиеся провода в цепь последовательно с лампочкой. Если последняя загорается, значит, два проверяемых конца относятся к одной обмотке. Таким способом определяются три пары проводов (A, B и C на рисунке ниже) относящихся к трем обмоткам.

Вторая задача (определение начала и конца обмоток) несколько сложнее и требует наличия батарейки и стрелочного вольтметра. Цифровой не годится из-за инертности. Порядок определения концов и начал обмоток показан на схемах 1 и 2.

К концам одной обмотки (например, A ) подключается батарейка, к концам другой (например, B ) - стрелочный вольтметр. Теперь, если разорвать контакт проводов А с батарейкой, стрелка вольтметра качнется в ту или иную сторону. Затем необходимо подключить вольтметр к обмотке С и проделать ту же операцию с разрывом контактов батарейки. При необходимости меняя полярность обмотки С (меняя местами концы С1 и С2) нужно добиться того, чтобы стрелка вольтметра качнулась в ту же сторону, как и в случае с обмоткой В . Таким же образом проверяется и обмотка А - с батарейкой, подсоединенной к обмотке C или B .

В итоге всех манипуляций должно получиться следующее: при разрыве контактов батарейки с любой из обмоток на 2-х других должен появляться электрический потенциал одной и той же полярности (стрелка прибора качается в одну сторону). Теперь остается пометить выводы одного пучка как начала (А1, В1, С1), а выводы другого - как концы (А2, В2, С2) и соединить их по необходимой схеме - "треугольник" или "звезда" (если напряжение двигателя 220/127В).

Извлечение недостающих концов . Пожалуй, самый сложный случай - когда двигатель имеет соединение обмоток по схеме "звезда", и нет возможности переключить ее на "треугольник" (в распределительную коробку выведено всего лишь три провода - начала обмоток С1, С2, С3) (см. рисунок ниже). В этом случае для подключения двигателя по схеме "треугольник" необходимо вывести в коробку недостающие концы обмоток С4, С5, С6.

Чтобы сделать это, обеспечивают доступ к обмотке двигателя, сняв крышку и, возможно, удалив ротор. Отыскивают и освобождают от изоляции место спайки. Разъединяют концы и припаивают к ним гибкие многожильные изолированные провода. Все соединения надежно изолируют, крепят провода прочной нитью к обмотке и выводят концы на клеммный щиток электродвигателя. Определяют принадлежность концов началам обмоток и соединяют по схеме "треугольник", подсоединив начала одних обмоток к концам других (С1 к С6, С2 к С4, С3 к С5). Работа по выводу недостающих концов требует определенного навыка. Обмотки двигателя могут содержать не одну, а несколько спаек, разобраться в которых не так-то и просто. Поэтому если нет должной квалификацией, возможно, не останется ничего иного, как подключить трехфазный двигатель по схеме "звезда", смирившись со значительной потерей мощности.

Схемы подключения трехфазного двигателя в однофазную сеть

Подключение по схеме "треугольник" . В случае бытовой сети, с точки зрения получения большей выходной мощности наиболее целесообразным является однофазное подключение трехфазных двигателей по схеме "треугольник". При этом их мощность может достигать 70% от номинальной. Два контакта в распределительной коробке подсоединяются непосредственно к проводам однофазной сети (220В), а третий - через рабочий конденсатор Ср к любому из двух первых контактов или проводам сети.

Обеспечение пуска . Пуск трехфазного двигателя без нагрузки можно осуществлять и от рабочего конденсатора (подробнее ниже), но если электродвигатель имеет какую-то нагрузку, он или не запустится, или будет набирать обороты очень медленно. Тогда для быстрого пуска необходим дополнительный пусковой конденсатор Сп (расчет емкости конденсаторов описан ниже). Пусковые конденсаторы включаются только на время пуска двигателя (2-3 сек, пока обороты не достигнут примерно 70% от номинальных), затем пусковой конденсатор нужно отключить и разрядить.


Подключение трехфазного электродвигателя в однофазную сеть по схеме "треугольник" с пусковым конденсатором Сп

Удобен запуск трехфазного двигателя с помощью особого выключателя, одна пара контактов которого замыкается при нажатой кнопке. При ее отпускании одни контакты размыкаются, а другие остаются включенными - пока не будет нажата кнопка "стоп".

Реверс . Направление вращения двигателя зависит от того, к какому контакту ("фазе") подсоединена третья фазная обмотка.

Направлением вращения можно управлять, подсоединив последнюю, через конденсатор, к двухпозиционному тумблеру, соединенному двумя своими контактами с первой и второй обмотками. В зависимости от положения тумблера двигатель будет вращаться в одну или другую сторону.

На рисунке ниже представлена схема с пусковым и рабочим конденсатором и кнопкой реверса, позволяющая осуществлять удобное управление трехфазным двигателем.

Подключение по схеме "звезда" . Подобная схема подключения трехфазного двигателя в сеть с напряжением 220В используется для электродвигателей, у которых обмотки рассчитаны на напряжение 220/127В.

Необходимая емкость рабочих конденсаторов для работы трехфазного двигателя в однофазной сети зависит от схемы подключения обмоток двигателя и других параметров. Для соединения "звездой" емкость рассчитывается по формуле:

Для соединения "треугольником":

Где Ср - емкость рабочего конденсатора в мкФ, I - ток в А, U - напряжение сети в В. Ток рассчитывается по формуле:

I = P/(1.73 U n cosф)

Где Р - мощность электродвигателя кВт; n - КПД двигателя; cosф - коэффициент мощности, 1.73 - коэффициент, характеризующий соотношение между линейным и фазным токами. КПД и коэффициент мощности указаны в паспорте и на табличке двигателя. Обычно их значение находится в диапазоне 0,8-0,9.

На практике величину емкости рабочего конденсатора при подсоединении "треугольником" можно посчитать по упрощенной формуле C = 70 Pн, где Pн - номинальная мощность электродвигателя в кВт. Согласно этой формуле на каждые 100 Вт мощности электродвигателя необходимо около 7 мкФ емкости рабочего конденсатора.

Правильность подбора емкости конденсатора проверяется результатами эксплуатации двигателя. Если её значение оказалось больше, чем требуется при данных условиях работы, двигатель будет перегреваться. Если емкость оказалась меньше требуемой, выходная мощность электродвигателя будет слишком низкой. Имеет резон подбирать конденсатор для трехфазного двигателя, начиная с малой емкости и постепенно увеличивая её значение до оптимального. Если есть возможность, лучше подобрать емкость измерением тока в проводах подключенных к сети и к рабочему конденсатору, например токоизмерительными клещами. Значение тока должно быть наиболее близким. Замеры следует производить при том режиме, в котором двигатель будет работать.

При определении пусковой емкости исходят, прежде всего, из требований создания необходимого пускового момента. Не путать пусковую емкость с емкостью пускового конденсатора. На приведенных выше схемах, пусковая емкость равна сумме емкостей рабочего (Ср) и пускового (Сп) конденсаторов.

Если по условиям работы пуск электродвигателя происходит без нагрузки, то пусковая емкость обычно принимается равной рабочей, то есть пусковой конденсатор не нужен. В этом случае схема включения упрощается и удешевляется. Для такого упрощения и главное удешевления схемы, можно организовать возможность отключения нагрузки, например, сделав возможность быстро и удобно изменять положение двигателя для ослабления ременной передачи, или сделав для ременной передачи прижимной ролик, например, как у ременного сцепления мотоблоков.

Пуск под нагрузкой требует наличия дополнительной емкости (Сп) подключаемой на время запуска двигателя. Увеличение отключаемой емкости приводит к возрастанию пускового момента, и при некотором определенном ее значении момент достигает своего наибольшего значения. Дальнейшее увеличение емкости приводит к обратному результату: пусковой момент начинает уменьшаться.

Исходя из условия запуска двигателя под нагрузкой близкой к номинальной, пусковая емкость должна быть в 2-3 раза больше рабочей, то есть, если емкость рабочего конденсатора 80 мкФ, то емкость пускового конденсатора должна быть 80-160 мкФ, что даст пусковую емкость (сумма емкости рабочего и пускового конденсаторов) 160-240 мкФ. Но если двигатель имеет небольшую нагрузку при запуске, емкость пускового конденсатора может быть меньше или, как писалось выше, его вообще может не быть.

Пусковые конденсаторы работают непродолжительное время (всего несколько секунд за весь период включения). Это позволяет использовать при запуске двигателя наиболее дешевые пусковые электролитические конденсаторы, специально предназначенные для этой цели (http://www.platan.ru/cgi-bin/qweryv.pl/0w10609.html).

Отметим, что у двигателя подключенного к однофазной сети через конденсатор, работающего без нагрузки, по обмотке, питаемой через конденсатор, идет ток на 20-30% превышающий номинальный. Поэтому, если двигатель используется в недогруженном режиме, то емкость рабочего конденсатора следует уменьшить. Но тогда, если двигатель запускался без пускового конденсатора, последний может потребоваться.

Лучше использовать не один большой конденсатор, а несколько поменьше, отчасти из-за возможности подбора оптимальной емкости, подсоединяя дополнительные или отключая ненужные, последние можно использовать в качестве пусковых. Необходимое количество микрофарад набирается параллельным соединением нескольких конденсаторов, исходя из того, что суммарная емкость при параллельном соединении подсчитывается по формуле: C общ = C 1 + C 1 + ... + С n .

В качестве рабочих используются обычно металлизированные бумажные или пленочные конденсаторы (МБГО, МБГ4, К75-12, К78-17 МБГП, КГБ, МБГЧ, БГТ, СВВ-60). Допустимое напряжение должно не менее чем в 1,5 раза превышать напряжение сети.

При использовании содержания данного сайта, нужно ставить активные ссылки на этот сайт, видимые пользователями и поисковыми роботами.