Проекты многоквартирных домов. Проекты гостиниц. Малоэтажное строительство. Проекты частных домов. Архитектура. Проектирование. Комплектующие для молниезащиты, возможные варианты Хранение упаковка транспортировка


Практически любой надземный объект не застрахован от удара молнии.
На земном шаре ежегодно происходит до 16 млн. гроз, т. е. около 44 тыс. за день.

Грозовая деятельность над различными участками земной поверхности неодинакова.

Для расчета грозозащитных мероприятий необходимо знать конкретную величину, характеризующую грозовую деятельность в данной местности. Такой величиной является интенсивность грозовой деятельности, которую принято определять числом грозовых часов или грозовых дней в году, вычисляемым как среднеарифметическое значение за ряд лет наблюдений для определенного места земной поверхности.

Интенсивность грозовой деятельности в данном районе земной поверхности определяется также числом ударов молнии в год, приходящихся на 1 км2 земной поверхности.

Число часов грозовой деятельности в год берется из официальных данных метеостанций данной местности.

Связь между грозовой деятельностью и средним числом поражений молнией на 1 км2 (n) составляет:

Средняя продолжительность гроз за один грозовой день для территории европейской части России и Украины 1,5–2 ч.

Среднегодовая продолжительность гроз для Москвы - 10-20 часов/год, плотность ударов молнии в землю 1/км2 в год - 2,0.

К арты среднегодовой продолжительности гроз

(ПУЭ 7. Правила устройства электроустановок)

В странах Европы данную статистику проектировщик может легко получить с помощью автоматизированной системы определения места удара молнии. Данные системы состоят из большого количества датчиков, размещенных по всей территории Европы и образующих единую контролирующую сеть.

Информация от датчиков в реальном масштабе времени поступает на контролирующие серверы и с помощью специального пароля доступна через Интернет.


По имеющимся данным, в районах с числом грозовых часов в году π = 30 на 1 км2 поверхности земли в среднем поражается 1 раз в 2 года, т.е. среднее число разрядов молнии в 1 км2 поверхности земли за 1 грозовой час равно 0,067. Эти данные, позволяющие оценить частоту поражения молнией различных объектов.

Ожидаемое количество поражений молнией в год зданий и сооружений высотой не более 60 м, не оборудованных молниезащитой, имеющих неизменную высоту (рис. 4а), определяется по формуле:

где:
S - ширина защищаемого здания (сооружения), м; L - длина защищаемого здания (сооружения), м; hx - высота здания по его боковым сторонам, м;
п - среднее число поражений молнией 1 км2 земной поверхности в год в районе строительства здания.

Примечание: для средней полосы России можно принять п = 5


Формула приведена с учетом того, что число поражений молнией здания или сооружения пропорционально площади, занимаемой не только самим зданием или сооружением, но и суммой площадей проекций защитных зон, создаваемых гранями и углами кровли здания или сооружения.

Если части здания имеют неодинаковую высоту (рис. 4б), то зона защиты, создаваемая высотной частью, может охватывать всю остальную часть здания.

Если зона защиты высотной части не охватывает всего здания, необходимо учесть часть здания, находящуюся вне зоны защиты высотной части.

Радиус защитного действия молниеотвода определяется высотой мачты и для традиционной системы приближенно рассчитывается по формуле:
R=1,732 x h,
где h - высота от самой высокой точки дома до пика молниеотвода.

Рис.4. Зона защиты, создаваемая сооружениями


Рис. 4. Зона защиты, создаваемая сооружениями а - здания с одной высотой; б - здания, имеющие разные высоты.
Рекомендуемая формула позволяет произвести количественную оценку вероятности поражения молнией различных сооружений, расположенных в равнинной местности с достаточно однородными грунтовыми условиями.

З начение параметра п, входящего в расчетную формулу, может в несколько раз отличаться от значений, приведенных выше.

В горных районах большая часть разрядов молнии происходит между облаками, поэтому значение п может оказаться существенно меньше.

Районы, где имеются слои почвы высокой проводимости, как показывают наблюдения, избирательно поражаются разрядами молнии, поэтому значение п в этих районах может оказаться существенно выше.

Избирательно могут поражаться районы с плохо проводящими грунтами, в которых проложены протяженные металлические коммуникации (кабельные линии, металлические трубопроводы).

Избирательно поражаются также возвышающиеся над поверхностью земли металлические предметы (вышки, дымовые трубы).


Плотность ударов молнии в землю, выраженная через число поражений 1 км 2 земной поверхности за год, определяется по данным метеорологических наблюдений в месте расположения объекта или рассчитывается по формуле.

При расчете числа поражений нисходящими молниями принимается, что возвышающийся объект принимает на себя разряды, которые в его отсутствие поразили бы поверхность земли определенной площади (так называемую поверхность стягивания). Эта площадь имеет форму круга для сосредоточенного объекта (вертикальной трубы или башни) и форму прямоугольника для протяженного объекта.
Имеющаяся статистика поражений объектов разной высоты в местностях с разной продолжительностью гроз позволила определить связь между радиусом стягивания (ro) и высота объекта (hх); в среднем его можно принять ro = 3hх.
Анализ показывает, что сосредоточенные объекты поражаются нисходящими молниями высота до 150 м. Объекты выше 150 м на 90 %, поражаются восходящими молниями.

В отечественных нормативах высота молниеотвода и защищаемого объекта при любых обстоятельствах отсчитывается от уровня земли, а не от крыши сооружения, что гарантирует определенный запас при проектировании, к сожалению, не оцененный в количественном выражении.

Внешняя молниезащита
Внешняя молниезащита дома проектируется с целью перехвата молнии и отвода ее в землю.Таким образом полностью исключается попадание молнии в здание и его возгорание.
Внутренняя молниезащита
Возгорание здание не единственная опасность при грозе. Существует опасность воздействия на приборы электромагнитного поля, которое вызывает перенапряжение в электрических сетях. Это может привести к отключению сигнализации и света, вывести из строя технику.
Установка специальных устройств защиты от импульсных напряжений позволяют мгновенно реагировать на перепады напряжения в сети и сохранить работающую дорогостоящую технику.

Основные типы систем молниеотводов:

    с использованием 1 штыря на весь дом, которая, в свою очередь, подразделяется на традиционную (молниеотвод Франклина) и с ионизатором;

    с использованием системы штырей, соединенных между собой (клетка Фарадея).

    с использованием троса, натягиваемым над защищаемым сооружением.


Воздействия тока молнии


При разряде молнии в объект ток оказывает тепловые, механические и электромагнитные воздействия.
Тепловые воздействия тока молнии. Протекание тока молнии через сооружения связано с выделением тепла. При этом ток молнии может вызвать нагревание токоотвода до температуры плавления или даже испарения.
Сечение проводников должно быть выбрано с таким расчетом, чтобы была исключена опасность недопустимых перегревов.


Оплавление металла в месте соприкосновения канала молнии может быть значительным, если молния попадает в острый шпиль. При контакте канала молнии с металлической плоскостью происходит оплавление на достаточно большой площади, численно равной в квадратных миллиметрах значению амплитуды тока в килоамперах.
Механические воздействия токов молнии. Механические усилия, возникающие в различных частях здания и сооружениях при прохождении по ним токов молнии, могут быть весьма значительными.

При воздействии токов молнии деревянные конструкции могут быть полностью разрушены, а кирпичные трубы и иные надземные сооружения из камня и кирпича могут иметь значительные повреждения.
При ударе молнии в бетон образуется узкий канал разряда. Значительная энергия, выделяемая в канале разряда, может вызвать разрушение, которое приведет либо к снижению механической прочности бетона, либо к деформации конструкции.
При ударе молнии в железобетон возможно разрушение бетона с деформацией стальной арматуры.

ПРОВЕРКА МОЛНИЕЗАЩИТЫ

Система молниезащиты здания нуждается в периодической проверке. Необходимость таких мероприятий обусловлена, во-первых, важностью данных устройств для безопасности как самих объектов недвижимости, так и находящихся поблизости людей, а во-вторых, нахождением громоотводов под постоянным воздействием неблагоприятных факторов окружающей среды.

Первая проверка системы молниезащиты осуществляется непосредственно после монтажа. В дальнейшем она проводится через определенные, установленные нормативами, промежутки времени.

ПЕРИОДИЧНОСТЬ ПРОВЕРОК МОЛНИЕЗАЩИТЫ

Периодичность проверки молниезащиты определяется в соответствии с п. 1.14 РД 34.21.122-87 «Инструкции по устройству молниезащиты зданий и сооружений».

Согласно документу для всех категорий зданий она проводится не реже 1 раза в год.

В соответствии с «Правилами технической эксплуатации электроустановок потребителей» проверка заземляющих контуров проводится:

    1 раз в полгода – визуальный осмотр видимых элементов заземляющего устройства;

    1 раз в 12 лет – осмотр, сопровождающийся выборочным вскрытием грунта.

Измерение сопротивления заземляющих контуров:

    1 раз в 6 лет – на ЛЭП с напряжением до 1000 В;

    1 раз в 12 лет – на ЛЭП с напряжением свыше 1000 В.

СИСТЕМА МЕРОПРИЯТИЙ ПРОВЕРКИ МОЛНИЕЗАЩИТЫ

Проверка молниезащиты включает в себя следующие мероприятия:

    проверка связи между заземлением и молниеприемником;

    измерение переходного сопротивления болтовых соединений системы грозозащиты;

    проверка заземления;

    проверка изоляции;

    визуальный осмотр целостности элементов системы (токоотводов, молниеприемника, мест контакта между ними), отсутствия на них коррозии;

    проверка соответствия реально смонтированной системы грозозащиты проектной документации, обоснованности установки данного типа громоотвода на данном объекте;

    испытание механической прочности и целостности сварных соединений системы грозозащиты (все соединения простукиваются молотком);

    определение сопротивления заземлителя каждого отдельно стоящего молниеотвода. При последующих проверках величина сопротивления не должна превышать уровень, определенный при приемо-сдаточных испытаниях, больше чем в 5 раз;

Проверка сопротивления системы грозозащиты проводится с помощью прибора MRU-101. При этом методика проверки молниезащиты может быть разной. К наиболее распространенным относятся:
Измерение сопротивления в системе молниезащиты по трёхполюсной схеме
Измерение сопротивления в системе молниезащиты по четырехполюсной схеме
Четырехполюсная система проверки является более точной и сводит до минимума возможность ошибки.
Проверку заземления лучше всего проводить в условиях максимального сопротивления грунта – при сухой погоде или в условиях наибольшего промерзания. В остальных случаях для получения точных данных используются поправочные коэффициенты.

По итогам осмотра системы оформляется протокол проверки молниезащиты, который свидетельствует об исправности оборудования.

Согласно действующим нормам для определения класса молниезащиты требуются подробные данные объекта и соответственно факторы риска. Для их получения предлагается заполнять несколько опросных листов. Но благодаря этой табличке можно предварительно выбрать класс молниезащиты и факторы риска без подробных данных.

Мин. амплитудное значение тока молнии

Макс. амплитудное значение тока молнии

Вероятность попадания в систему молниезащиты

3 кА

200 кА

5 кА

150 кА

10 кА

100 кА

16 кА

100 кА

Молниезащита промышленных зданий и сооружений
(Справочник по электроснабжению промышленных предприятий. Промышленные электрические сети).

Определение необходимости молниезащиты производственных зданий и сооружений, не вошедших в указанные в табл. , может производиться по причинам, дающим основание для применения молниезащитных устройств.
Причинами для необходимости устройств молниезащиты может служить число поражений молнией в год более 0,05 для зданий и сооружений I и II степени огнестойкости; 0,01 - для III, IV и V степени огнестойкости (независимо от активности грозовой деятельности в рассматриваемом районе).
В зданиях большой площади (при ширине 100 м и более) необходимо согласно § 2-15 и 2-27 СН305-69 предусматривать меры для выравнивания потенциала внутри здания во избежание повреждения электроустановок и поражения людей при прямых ударах молний в здание.

Классификация зданий и сооружений по устройству молниезащиты и необходимости ее выполнения

Здания и сооружения

Местность, в которой здания и сооружения подлежат обязательной молниезащите

Производственные здания и сооружения с производствами, относимыми к классам В-І и В-ІІ ПУЭ На всей территории СССР
Производственные здания и сооружения с помещениями, относимыми к классам В-Іа, В-Іб и В-ІІа по Правилам устройства электроустановок В местностях со средней грозовой деятельностью 10 ч и более в год

ІІ

Наружные технические установки и наружные склады, содержащие взрывоопасные газы, пары, горючие и легковоспламеняющиеся жидкости (например, газгольдеры, емкости, сливо-наливные эстакады и т. п.),относимые к классу В-ІІа по ПУЭ На всей территории СССР

ІІ

Производственные здания и сооружения с производствами, относимыми к классам П-І, П-ІІ или П-ІІа по ПУЭ В местностях со средней грозовой деятельностью 20 грозовых часов и более в год при ожидаемом количестве поражений молнией здания или сооружения в год не менее 0,05 для зданий или сооружений І степени огнестойкости и 0,01 - для III, IV и V степени стойкости

ІІІ

Производственные здания и сооружения III, IV и V степени огнестойкости, относимые по ступеням пожарной опасности к категориям Г и Д по СНиП ІІ-М, 2-62, а также открытые склады твердых горючих веществ, относимые к классу П-ІІІ по ПУЭ В местностях со средней грозовой деятельностью 20 грозовых часов и более в год при ожидаемом количестве поражений молнией здания или сооружения в год не менее 0,05

ІІІ

Наружные установки, в которых применяются или хранятся горючие жидкости с температурой вспышки паров выше 45 оС, относимые к классу П-ІІІ по ПУЭ

ІІІ

Животноводческие и птицеводческие здания и сооружения сельскохозяйственных предприятий III, IV и V степени огнестойкости следующего назначения: коровники и телятники на 100 голов и более, свинарники для животных всех возрастов и групп на 100 голов и более; конюшни на 40 голов и более; птичники для всех видов возрастов птицы на 1000 голов и более В местностях со средней грозовой деятельностью 40 грозовых часов и более в год

ІІІ

Вертикальные вытяжные трубы промышленных предприятий и котельных, водонапорные и силосные башни, пожарные вышки высота 15-30 м от поверхности земли В местностях со средней грозовой деятельностью 20 грозовых часов и более в год

ІІІ

Вертикальные вытяжные трубы промышленных предприятий и котельных высотой более 30 м от поверхности земли На всей территории СССР

ІІІ

Жилые и общественные здания, возвышающиеся на уровне общего массива застройки более, чем на 25 м, а также отдельно стоящие здания высотой более 30 м, удаленные от массива застройки не менее, чем на 100 м В местностях со средней грозовой деятельностью 20 грозовых часов и более в год

ІІІ

Общественные здания IV и V степени огнестойкости следующего назначения: детские сады и ясли; учебные и спальные корпуса, столовые санаториев, учреждений отдыха и пионерских лагерей, спальные корпуса больниц; клубы и кинотеатры В местностях со средней грозовой деятельностью 20 грозовых часов и более в год

ІІІ

Здания и сооружения, имеющие историческое и художественное значение, находящиеся в ведении управления изобразительных искусств и охраны памятников Министерства культуры СССР На всей территории СССР

ІІІ


Разъяснение Управления по надзору в электроэнергетике Ростехнадзора о совместном применении "Инструкции по молниезащите зданий и сооружений" (РД 34.21.122-87) и "Инструкции по молниезащите зданий, сооружений и промышленных коммуникаций" (СО 153-34.21.122-2003)

ФЕДЕРАЛЬНАЯ СЛУЖБА

Руководителям Федеральных
государственных учреждений
управлений и энергетических
инспекций государственного
энергетического надзора

ПО ЭКОЛОГИЧЕСКОМУ, ТЕХНОЛОГИЧЕСКОМУ

И АТОМНОМУ НАДЗОРУ

УПРАВЛЕНИЕ

ПО НАДЗОРУ В ЭЛЕКТРОЭНЕРГЕТИКЕ

109074, Москва, К-74

Китайгородский пр., 7

тел. 710-55-13, факс 710-58-29

01.12.2004

10-03-04/182

На №

от

В управление по надзору в электроэнергетике Федеральной службы по надзору в электроэнергетике (Ростехнадзор) и ранее в Госэнергонадзор от многочисленных организаций поступают вопросы о порядке использования "Инструкции по молниезащите зданий, сооружений и промыш ленных коммуникаций" (СО 153-34.21.122-2003), утвержденной приказом Минэнерго России от 30.06.2003 № 280. Обращается внимание на трудности пользования данной Инструкцией из-за от сутствия справочных материалов. Также задаются вопросы о правомерности приказа РАО "ЕЭС России" от 14.08.2003 № 422 "О пересмотре нормативно-технических документов (НТД) и порядке их действия в соответствии с ФЗ "О техническом регулировании" и о сроках подготовки посо бий к инструкцииСО 153-34.21.122-2003 .

Управление по надзору в электроэнергетике Ростехнадзора в связи с этим разъясняет.

В соответствии с положением Федерального закона от 27.12.2002№ 184-ФЗ"О техническом регулировании", ст. 4 органы исполнительной власти вправе утверждать (издавать) документы (акты) только рекомендательного характера. К такому типу документа и относится "Инструкция по молниезащите зданий, сооружений и промышленных коммуникаций".

Приказ Минэнерго России от 30.06.2003 № 280 не отменяет действие предыдущего издания "Инструкции по молниезащите зданий и сооружений" (РД 34.21.122-87), а слово "взамен" в преди словии отдельных изданий инструкцииСО 153-34.21.122-2003, не означает недопустимость использования предыдущей редакции. Проектные организации вправе использовать при определе нии исходных данных и при разработке защитных мероприятий положение любой из упомянутых инструкций или их комбинацию.

Срок подготовки справочных материалов к "Инструкции по молниезащите зданий, сооруже ний и промышленных коммуникаций",СО 153-34.21.122-2003, к настоящему времени не опреде лен из-за отсутствия источников финансирования этой работы.

Приказ РАО "ЕЭС России" от 14.08.2003 № 422 является корпоративным документом и не имеет силы для организаций, не входящих в структуру РАО "ЕЭС России".

Начальник Управления Н.П. Дорофеев

ГОСТы по молниезащите

ГОСТ Р МЭК 62561.1-2014 Компоненты системы молниезащиты. Часть 1. Требования к соединительным компонентам
ГОСТ Р МЭК 62561.2-2014 Компоненты системы молниезащиты. Часть 2. Требования к проводникам и заземляющим электродам
ГОСТ Р МЭК 62561.3-2014 Компоненты систем молниезащиты. Часть 3. Требования к разделительным искровым разрядникам
ГОСТ Р МЭК 62561.4-2014 Компоненты систем молниезащиты. Часть 4. Требования к устройствам крепления проводников
ГОСТ Р МЭК 62561.5-2014 Компоненты систем молниезащиты. Часть 5. Требования к смотровым колодцам и уплотнителям заземляющих электродов
ГОСТ Р МЭК 62561.6-2015 Компоненты системы молниезащиты. Часть 6. Требования к счетчикам ударов молнии
ГОСТ Р МЭК 62561-7-2016 Компоненты системы молниезащиты. Часть 7. Требования к смесям, нормализующим заземление

ГОСТ Р МЭК 62305-1-2010 Менеджмент риска. Защита от молнии. Часть 1. Общие принципы
ГОСТ Р МЭК 62305-2-2010 Менеджмент риска. Защита от молнии. Часть 2. Оценка риска
ГОСТ Р МЭК 62305-4-2016 Защита от молнии. Часть 4. Защита электрических и электронных систем внутри зданий и сооружений

ГОСТ Р54418.24-2013 (МЭК 61400-24:2010) Возобновляемая энергетика. Ветроэнергетика. Установки ветроэнергетические. Часть 24. Молниезащита

Международная электротехническая комиссия (МЭК; англ. International Electrotechnical Commission, IEC; фр. Commission électrotechnique internationale, CEI) - международная некоммерческая организация по стандартизации в области электрических, электронных и смежных технологий.
Стандарты МЭК имеют номера в диапазоне 60 000 - 79 999, и их названия имеют вид типа МЭК 60411 Графические символы. Номера старых стандартов МЭК были преобразованы в 1997 году путём добавления числа 60 000, например, стандарт МЭК 27 получил номер МЭК 60027. Стандарты, развитые совместно с Международной организацией по стандартизации, имеют названия вида ISO/IEC 7498-1:1994 Open Systems Interconnection: Basic Reference Model.

Международной Электротехнической Комиссией (МЭК) разработаны стандарты, в которых изложены принципы защиты зданий и сооружений любого назначения от перенапряжений, позволяющие правильно подойти к вопросам проектирования строительных конструкций и системы молниезащиты объекта, рациональному размещению оборудования и прокладке коммуникаций.

К ним, в первую очередь, относятся следующие стандарты:

    IEC-61024-1 (1990-04): «Молниезащита строительных конструкций. Часть 1. Основные принципы».

    IEC-61024-1-1 (1993-09): «Молниезащита строительных конструкций. Часть 1. Основныепринципы. Руководство А: Выбор уровней защиты для молниезащитных систем».

    IEC-61312-1 (1995-05): «Защита от электромагнитного импульса молнии. Часть 1. Основные принципы».

Требования, изложенные в данных стандартах, формируют «Зоновую концепцию защиты», основными принципами которой являются:

    применение строительных конструкций с металлическими элементами (арматурой, каркасами, несущими элементами и т.п.), электрически связанными между собой и системой заземления, и образующими экранирующую среду для уменьшения воздействия внешних электромагнитных влияний внутри объекта («клетка Фарадея»);

    наличие правильно выполненной системы заземления и выравнивания потенциалов;

    деление объекта на условные защитные зоны и применение специальных устройств защиты от перенапряжений (УЗИП);

    соблюдение правил размещения защищаемого оборудования и подключенных к нему проводников относительно другого оборудования и проводников, способных оказывать опасное воздействие или вызвать наводки.

1. НАЗНАЧЕНИЕ

1.1. Молниезащита предназначена для защиты оборудования, размещаемого на мачте, от ударов молний путём приёма и отведения разрядов в землю.

2. ОПИСАНИЕ КОНСТРУКЦИИ

2.1. Молниезащита состоит из 2-х частей: молниеприёмная часть, заземляющая часть.

Молниеприёмная часть-это приёмник и токоотвод.

2.2 Молниеприёмник представляем собой стальной стержень длинной до 2 м, который крепится на мачте при помощи изолирующих (токонепроводящих) кронштейнов. Молниеприёмник соединяется с токоотводом при помощи специальных зажимов (или резьбовых соединений), обработанных токопроводящей пастой для повышения качества соединения.

2.3. Токоотвод представляет собой изолированный стержневой проводник (изолированный провод), который соединяется с заземляющей частью (система заземления).

Рис.1. Молниезащита мачты с оборудованием

3. КОМПЛЕКТНОСТЬ

3.1. Приёмная часть

Наименование

Кол-во шт.

Молниеприёмник L=2м

Кронштейн изолирующий с креплениями в комплекте

Токоотвод изолированный с медным стержнем d=8-10мм

(длинна подбирается в зависимости от высоты мачты)

Стяжка для токоотвода

Изолятор для растяжки заземления

Зажим универсальный из оцинкованной стали (электрод/полоса/прут)

Молниезащита может поставляться как системой заземления, так и без нёё.

4. ПОРЯДОК УСТАНОВКИ

4.1. Собрать и закрепить на мачте молниеприёмник, согласно схеме на рис.2.

4.2. Соединить молниеприёмник (1) с токоотводом (3) при помощи зажима (6) с использованием токопроводящей пасты.

4.3. Растяжку верхнего уровня мачты, располагаемую со стороны молниеприёмника соединить с мачтой через изолятор (5) (в разрыв тросовой оттяжки, как проводника).

4.4. Токоотвод (6) закрепить на растяжке при помощи хомутов-стяжек кабельных (4).

4.5. Установить и закрепить мачту.

4.6. Соединить токоотвод (3) с системой заземления.

5. УХОД

Смазывать все резьбовые соединения консистентной смазкой не реже 1 раза в год.

6.ХРАНЕНИЕ УПАКОВКА ТРАНСПОРТИРОВКА

Молниезащита должна храниться в таре изготовителя.

Хранение в упакованном состоянии допускается в оборудованных складских помещениях при относительной влажности воздуха не выше 75% и отсутствии паров кислот и щелочей.

Молниезащита в упакованном виде может транспортироваться любим видом транспорта.

7. ГАРАНИТИИ ИЗГОТОВИТЕЛЯ

Гарантийный срок службы молниезащиты один год со дня установки (ввода в эксплуатацию), но не более 18 месяцев со дня изготовления.

8. СВИДЕТЕЛЬСТВО О ПРИЁМКЕ

Молниезащита соответствует требованиям конструкторской документации и признана годной для эксплуатации.

Необходимость составить паспорт заземляющего устройства обусловлена законодательно. Согласно нормативным данным ПТЭЭП, паспорт заземляющего контура содержит:

  • основные технические характеристики устройства;
  • данные о произведенных проверках надлежащего эксплуатационного состояния системы заземления.

Стандартизация наличия такого документа аргументирована его основной задачей.

Для чего нужен паспорт

В паспорте заземляющего комплекта фиксируются данные об особенностях монтажа защитного заземления электроустановок, ориентированные под структурные характеристики разного типа объектов.

Существует несколько типов систем заземления и технологий его производства. Выбор оптимального варианта осуществляется исходя из анализа различных аспектов (удельное сопротивление разного вида грунтов, климатические изменения сопротивления грунта и т. п.). Используя паспортные данные, специалист сможет подобрать максимально подходящий заземляющий комплект под конкретную схему.

Правильно и четко составленная документация по защитному оборудованию играет важную роль для нормального функционирования электрической системы объекта. Все вписанные в документ протоколы проверок, примеры произведенных испытаний и другие дополнительные исследовательские материалы служат документальным подтверждением надежной работы защитной системы заземления.

При возникновении некоторых спорных вопросов специализированным органам контроля можно беспроблемно предоставить все зафиксированные данные.

Паспорт на заземление: какие сведения содержит

В документе отображается не только разного рода техническая и расчетно-исследовательская информация о контуре заземления, а и дополнения - это все схемы заземления.

Стандартное структурное содержание паспорта:

  1. Обложка.
  2. Технические параметры устройства.
  3. Значительное количество таблиц. Вносятся следующие табличные данные:
    • Материалы о визуальной проверке (данные о коррозии, дефектах и предположения по вариантам устранения неполадок).
    • Результаты всех осмотров.
    • Описание проведенных ремонтных работ.
    • Данные, которые отображены в специальных протоколах и актах. Документы о проведении измерений или испытаний отдельно прилагаются к паспорту.
  4. Дополнительные сведения:
    • Данные о возможной связи с аналогичными заземляющими устройствами или различными коммуникациями.
    • Дата ввода заземляющего оборудования в эксплуатацию.
    • Все основные параметры устройства.
    • Сопротивление растекания тока заземлителя.
    • Сопротивление грунта и металлосвязи.

Прописываются дополнительные сведения, если есть необходимость в их фиксировании - это не общеобязательно.

Форма паспорта заземляющего устройства

Существует стандартизация форм внесения данных для различной технической документации. Для заземляющего устройства законодательно закреплена форма 24.

Указывается дата начала эксплуатации и тип электроустановки. Конкретизировано описываются технические характеристики системы заземления:

  • данные о материале заземляющих электродов;
  • количество, размер и конфигурация электродов заземлителя;
  • отображаются данные о залегании соединительных полос.

Ознакомиться с принципом заполнения такого технического документа можно по примеру. Содержание и вид бланка паспорта защитного заземления можно видоизменять, но основная информация должна быть отображена (обложка, технические характеристики, чертеж).

Принцип внесения результатов проверки

Осмотр заземления специалистом должен проводиться 1 раз в полгода. Очень важно отображать результат каждой проверки в таблице. Основной момент, на который обращается внимание при проведении такого осмотра, - стойкость заземлителей к коррозии.

На местах соединения электроустановки с заземляющим устройством не должно быть никаких обрывов. Проверяется контакт всех элементов цепи. Может потребоваться вскрыть грунт для измерения электрического сопротивления устройства и для осмотра состояния заземляющей цепи. Результаты заносятся в соответствующую таблицу. Периодичность подобного осмотра - не реже одного раза в 12 лет.

При обнаружении определенных неисправностей с заземляющим оборудованием специалистами будет начата работа по их устранению. На этом этапе часто применяется переносное заземление.

Паспорт для переносной модели

Посредством переносной модели заземления реализуется безопасность производства электромонтажных или ремонтных работ на выключенном электрическом оборудовании. Все подобные устройства соответствуют ГОСТу.

Законодательно утверждено требование по оформлению паспорта на такие аппараты. Структура технического документа переносной модели очень похожа с аналогичным документом электрического оборудования.

Стандартизация паспортных данных переносной модели заземления:

  • технические параметры и характеристики устройства;
  • данные о приемке изделия;
  • разрешения на его эксплуатацию;
  • гарантии производителя устройства;
  • условия его хранения;
  • меры безопасности во время работы с ним.

При правильном устройстве такая переносная модель заземляющего оборудования - основное средство защиты во время работ с электроустановками в цепях без постоянных ЗУ (до 1кВ).

Вся техническая документация по защите электрифицируемого объекта составляется с учетом профильных норм и правил. Ответственный подход к проектированию, электромонтажу заземления и надлежащему документальному фиксированию результатов таких работ послужит гарантией максимального уровня безопасности для элементов электрической сети и ее пользователей.

1.
2.
3.

Молниезащита вне зависимости от того, промышленный это объект, общественное здание или частный коттедж, необходима – в первую очередь потому, что она предотвратит гибель людей и возгорание, которое может возникнуть при прямом попадании молнии.

Варианты создания молниезащиты

Для каждого варианта кровельных покрытий существуют определенные виды молниезащиты. Например, создание защиты от последствий удара молнией для мягкой кровли выполняют с применением специальной сетки или особых держателей. Состоят, как видно на фото, молниезащитные сетки из металлических проводников, которые прокладывают по коньку крыши, и токоотводных опусков, заземленных по отдельности. Их фиксация производится с помощью материала, использованного для монтажа кровли. Существует другой способ обустройства молниеотводов, считающийся универсальным, это монтаж на двух фронтонах здания мачт между которыми крепится тросик-провод.


Конструкция молниезащиты бывает разной, и выбирают ее исходя из конкретной ситуации. Так для крыши из оцинковки используют следующий метод: стальную проволоку диаметром 6 миллиметров закатывают по периметру в кровельное железо и в углах кровли заземляют. При этом молниезащита дымовой трубы, которая возвышается над коньком, создается путем монтажа молниеприемника на дымник, его также заземляют. Защищенная таким образом кровля от грозы не пострадает.

Имеет ряд особенностей молниезащита склада и промышленного здания, когда кровля сделана из металлочерепицы. Дело в том, что этот кровельный материал долговечен и несложен в монтаже, но в эксплуатации не всегда безопасен, поскольку конструкция его листов имеет ряд особенностей.

Металлочерепицу изготавливают из гофрированных алюминиевых или стальных пластин, а сверху с обеих сторон их покрывают пластиком (по своей функциональности они аналогичны обкладкам конденсатора). Листы кровли, изолированные друг от друга и от земли, способны в случае разряда молнии накапливать электрический потенциал – не следует забывать, что электростатический разряд в ряде случаев достигает десятки тысяч вольт.


Известно, что на территории страны есть регионы, где грозы проходят чаще, чем в других местностях – прежде чем выбрать металлочерепицу в качестве материала для кровли, необходимо учесть вышеописанные риски. Такие объекты относятся по молниезащите к 1 и 2 классу и создание молниеотводов на них должно быть выполнено грамотно. При этом на каждое заземляющее устройство, находящееся в эксплуатации, заводят паспорт молниезащиты.

Системы молниезащиты: активная и пассивная

Для принятия решения о допуске к эксплуатации общественных и промышленных зданий и сооружений необходим протокол молниезащиты, составлять его могут только сертифицированные лаборатории (прочтите: " ").

Пассивная система используется на протяжении нескольких столетий.

Молниезащита дачи, жилого дома, производственного объекта может иметь один из таких молниеприемников, как:

  • тросовой;
  • стержневой штырь;
  • специальная сетка.


Относительно недавно появилась активная и очень быстро стала популярной. Ее конструкция представляет собой установленную на кровле мачту с прикрепленной на ней молниеприемной головкой. Активная система отличается от пассивной быстрым монтажом и более широкой зоной защиты. По сравнению со стержневым молниеприемником она охватывает территорию в 5 раз больше. Активная система актуальна, когда требуется молниезащита церквей, колоколен, водонапорных башен, телецентров и т.д.

Молниезащита мягкой кровли

С информацией относительно того, как создается активная или пассивная молниезащита коттеджа своими руками на мягкой кровле можно ознакомиться в интернете. Если монтируется пассивная система, то используется из 6-миллиметровой стальной проволоки с шагом от 6х6 метров до 12х12 метров. Ее укладывают под слой утеплителя (обязательно несгораемого или трудносгораемого).

Устанавливаем заземление в частном доме, достаточно подробная видеоинструкция:

Желательно, чтобы монтаж сетки осуществлялся в процессе проведения кровельных работ. Если мягкая кровля уложена, тогда возможны проблемы. Самая большая из них заключается в том, что имеется вероятность повреждения поверхности в процессе монтажа молниеприемной сетки. Связано это с тем, что такие материалы для молниезащиты как проволока из стали поставляется в бухтах и их приходится выпрямлять непосредственно на крыше. Также при проведении работ надо передвигаться по кровле, и целостность покрытия не всегда удается сохранить (читайте также: "

Документы о проведении измерений или испытаний отдельно прилагаются к паспорту.

  • Дополнительные сведения:
  • Данные о возможной связи с аналогичными заземляющими устройствами или различными коммуникациями.
  • Дата ввода заземляющего оборудования в эксплуатацию.
  • Все основные параметры устройства.
  • Сопротивление растекания тока заземлителя.
  • Сопротивление грунта и металлосвязи.

Прописываются дополнительные сведения, если есть необходимость в их фиксировании - это не общеобязательно. Форма паспорта заземляющего устройства Существует стандартизация форм внесения данных для различной технической документации. Для заземляющего устройства законодательно закреплена форма 24. Указывается дата начала эксплуатации и тип электроустановки.

Паспорт молниезащиты

Существует несколько типов систем заземления и технологий его производства. Выбор оптимального варианта осуществляется исходя из анализа различных аспектов (удельное сопротивление разного вида грунтов, климатические изменения сопротивления грунта и т.
п.).

Используя паспортные данные, специалист сможет подобрать максимально подходящий заземляющий комплект под конкретную схему. Правильно и четко составленная документация по защитному оборудованию играет важную роль для нормального функционирования электрической системы объекта.

Все вписанные в документ протоколы проверок, примеры произведенных испытаний и другие дополнительные исследовательские материалы служат документальным подтверждением надежной работы защитной системы заземления. При возникновении некоторых спорных вопросов специализированным органам контроля можно беспроблемно предоставить все зафиксированные данные.

Форма паспорта молниезащитных устройств

Необходимость составить паспорт заземляющего устройства обусловлена законодательно. Согласно нормативным данным ПТЭЭП, паспорт заземляющего контура содержит: Содержание:

  • Для чего нужен паспорт
  • Паспорт на заземление: какие сведения содержит
  • Форма паспорта заземляющего устройства
  • Принцип внесения результатов проверки
  • Паспорт для переносной модели
  • основные технические характеристики устройства;
  • данные о произведенных проверках надлежащего эксплуатационного состояния системы заземления.

Стандартизация наличия такого документа аргументирована его основной задачей.
Для чего нужен паспорт В паспорте заземляющего комплекта фиксируются данные об особенностях монтажа защитного заземления электроустановок, ориентированные под структурные характеристики разного типа объектов.

Какую информацию содержит паспорт заземляющего устройства и как его заполнять

R 142 0 R 143 0 R 144 0 R 145 0 R] endobj 146 0 obj <

Документальное оформление молниезащиты

Паспорт молниезащиты. Образец №1 скачать Паспорт молниезащиты. Образец №2 скачать Что это такое паспорт молниезащиты? Паспорт молниезащиты – это документ, который передается Заказчику (владельцу здания или сооружения) от монтажной или осуществляющей проверку (контрольные испытания) системы молниезащиты и заземления организации, с данными визуального контроля, проверок и замеров элементов системы на предмет соответствия их требованиям проекта и нормативных документов (базовых РД 34.21.122-87, СО 153-34.21.122-2003 и других).

Инфо

Эта организация должна иметь аттестованную электрическую лабораторию и необходимые для контроля и проверки приборы, поверенные должным образом. Когда необходима паспортизация? Ее проводят во время приёмо-сдаточных работ, сличительных или контрольных испытаниях, а также по истечении определенного срока службы на соответствие эксплуатационным характеристикам.

Загрузка документа «паспорт на заземляющее устройство энергообъекта»

Конкретизировано описываются технические характеристики системы заземления:

  • данные о материале заземляющих электродов;
  • количество, размер и конфигурация электродов заземлителя;
  • отображаются данные о залегании соединительных полос.

Ознакомиться с принципом заполнения такого технического документа можно по примеру. Содержание и вид бланка паспорта защитного заземления можно видоизменять, но основная информация должна быть отображена (обложка, технические характеристики, чертеж).

Осмотр заземления специалистом должен проводиться 1 раз в полгода. Очень важно отображать результат каждой проверки в таблице.

Внимание

Основной момент, на который обращается внимание при проведении такого осмотра, - стойкость заземлителей к коррозии. На местах соединения электроустановки с заземляющим устройством не должно быть никаких обрывов.

Проверяется контакт всех элементов цепи.
Специалист Группа: ПользователиСообщений: 552Регистрация: 13.12.2006Из: Н.НовгородПользователь №: 7881 Требование к форме паспорта не встречал никогда. Что касается его содержания, то необходимую информацию можно подчерпнуть из РЕКОМЕНДАЦИЙПО ЭКСПЛУАТАЦИОННО-ТЕХНИЧЕСКОЙ ДОКУМЕНТАЦИИ, ПОРЯДКУ ПРИЕМКИ В ЭКСПЛУАТАЦИЮ И ЭКСПЛУАТАЦИИ УСТРОЙСТВ МОЛНИЕЗАЩИТЫ — последний раздел инструкции по молниезащите и п.

У нас на сайте каждый может бесплатно скачать образец интересующего договора или образца документа, база договоров пополняется регулярно. В нашей базе более 5000 договоров и документов различного характера.

Если вами замечена неточность в любом договоре, либо невозможность функции “скачать” какого-либо договора, обратитесь по контактным данным. Приятного времяпровождения! Сегодня и навсегда - загрузите документ в удобном формате! Уникальная возможность скачать любой документ в DOC и PDF абсолютно бесплатно.
Многие документы в таких форматах есть только у нас.

Образец заполнения паспорта молниезащиты

Необходимо обязательно указать:

  • цель испытаний (приемно-сдаточные, сличительные, контрольные испытания, эксплуатационные, для целей сертификации)
  • климатические условия (температуру, влажность воздуха, атмосферное давление)

В результате в таблице указывают места проведения замеров и элементы системы для которых они производились, количество однотипных точек и собственно значение сопротивления. Обязательно далее следует информация о приборе, которым производилась проверка (тип, заводской номер, метрологические характеристики, даты поверок, номер аттестата и орган, его выдавший).

Пример заполнения паспорта молниезащиты

Протокол проверки сопротивления заземляющего устройства Протокол проверки сопротивления заземляющего устройства (здание гаража) скачать Протокол проверки сопротивления ЗУ (производственный корпус) скачать Кроме цели и параметров внешних условий, как в предыдущем пункте, при измерении обязательно вносят следующую информацию:

  • Вид и характер грунта
  • Удельное сопротивление грунта
  • Номинальное напряжение электроустановки
  • Режим нейтрали

Результаты измерений заносят в таблицу:

  • Место измерения с указанием точки измерения на схеме
  • Измеренное значение сопротивления
  • Коэффициент сезонности
  • Приведенное окончательное значение сопротивление

На основании данных измерений делаются выводы и заключение о соответствии полученных значений требованиям нормативов.

Форма паспорта молниезащиты

Этот документ является обязательным и включает в себя следующее:

  • схематическое расположение элементов;
  • данные о введении системы в эксплуатацию;
  • информацию о заземляющих элементах;
  • показатели уровня коррозии приспособлений;
  • величины сопротивления;
  • отчетные данные в случае проведения проверок и ремонтных работ.

Все это необходимо вносить, когда меняются какие-либо показатели. Также система должна постоянно проверяться на работоспособность.
Помощь профессионалов Помощь квалифицированных специалистов позволяет избежать различных ошибок и неточностей в ходе осуществления работ и проверок, выявления неисправностей. Сотрудники компании «Алеф-Эм» имеют большой опыт в данной сфере, что позволяет реализовать даже самую сложную задачу грамотно и оперативно.