Самодельные металлоискатели, или как сделать металлоискатель своими руками. Схема простого металлоискателя c повышенной чувствительностью Применение низкочастотного трансивера

Металлоискатели, основанные на регистрации на биений, оказываются малочувствительными при поисках металлов со слабыми ферромагнитными свойствами, таких как, например, медь, олово, серебро. Повысить чувствительность металлоискателей этого типа невозможно, поскольку разность частот биения малозаметна при обычных методах индикации. Значительный эффект дает применение кварцованных металлоискателей. Металлоискатель, принципиальная схема которого приведена на рис. 1, а, состоит из измерительного генератора, собранного на транзисторе VT1, и буферного каскада - эмиттерного повторителя, собранного на транзисторе VT2, отделенных кварцевым резонатором ZQ1 от индикаторного устройства - детектора на диоде VD2 с усилителем постоянного тока на транзисторе VT3. Нагрузкой усилителя служит стрелочный прибор с током полного отклонения 1 мА.

Рис.1. (Малогабаритный чувствительный металлоискатель)

Вследствие высокой добротности кварцевого резонатора малейшие изменения частоты измерительного генератора будут приводить к уменьшению полного сопротивления последнего, как это видно из характеристики, приведенной на рис. 1, б, а это, в конечном итоге, повысит чувствительность прибора и точность измерений.
Подготовка к поиску заключается в настройке генератора на частоту параллельного резонанса кварца, равную 1 МГц. Эта настройка производится конденсаторами переменной емкости С2 (грубо) и подстроечным конденсатором С1 (точно) при отсутствии около рамки металлических предметов. Поскольку кварц является элементом связи между измерительной н индикаторной частями устройства, его сопротивление в момент резонанса велико и минимальное показание стрелочного прибора свидетельствует о точной настройке устройства. Уровень чувствительности регулируется переменным резистором R8.
Особенностью устройства является кольцевая рамка L1, изготовленная из отрезка кабеля. Центральную жилу кабеля удаляют и вместо нее продергивают шесть витков провода типа ПЭЛ 0,1 -0,2 мм длиной 115 мм. Конструкция рамки показана на рис. 1, а. Такая рамка обладает хорошим электростатическим экраном.
Жесткость конструкции рамки обеспечивается размещением ее между двумя дисками из оргетекла или гетйпакса диаметром 400 мм и толщиной 5-7 мм.
В приборе использованы транзисторы КТ315Б, опорный диод - стабилитрон 2С156А, детекторный диод тина Д9 с любым буквенным индексом. Частота кварца может быть в интервале частот от 90 кГц до 1,1 МГц. Кабель - типа РК-50.



Вариант № 3

Металлоискатель

Металлоискатель, принципиальная схема которого изображена на рис.1, собран всего на одной микросхеме К176ЛП2. Один из ее элементов (DD1.1) использован в образцовом генераторе, другой (DD1.2) - в перестраиваемом.Колебательный контур образцового генератора состоит из катушки L1 и конденсаторов Cl, C2, а перестраиваемого - из поисковой катушки L2 и конденсатора С4; первый перестраивают переменным конденсатором Cl, второй - подбором емкости конденсатора С4.

На элементе DD1.3 выполнен смеситель колебаний образцовой и переменной частот. С нагрузки этого узла - переменного резистора R5 - сигнал разностной частоты поступает на вход элемента DD1.4, а усиленное им напряжение звуковой частоты - па головные телефоны BF1.Прибором можно обнаружить пятикопеечную монету (доперестроечную денежную единицу) на глубине до 60 мм. А крышку канализационного колодца - на глубине до 0,6 м.

Вариант №4

Блок питания

Вариант № 10

Радиопередатчик

Вариант №5

АВТОМАТИЧЕСКАЯ ЗАЩИТА СЕТЕВОЙ РАДИОАППАРАТУРЫ

Устройство предназначено для предотвращения перегрузки и неисправностей в радиоаппаратуре из-за отклонения сетевого напряжения питания за допуск. Оно будет особенно полезно на даче или в деревне, где нередки значительные колебания напряжения в сети. Часто используемые при нестабильной сети ферромагнитные стабилизаторы имеют узкий диапазон стабилизации и при значительных колебаниях напряжения (в сторону увеличения) просто выходят из строя. Для некоторой радиоаппаратуры опасно не только повышенное, но и пониженное напряжение сети.

Контролировать сеть измерительным прибором, каждый раз перед включением радиоприборов, неудобно да и неэффективно, так как отклонение может произойти в процессе работы. Но эту задачу может взять на себя автоматическое контрольное устройство, через которое и питается аппаратура. Электрическая схема устройства приведена на рис. 1.34 и 1.35 и состоит из четырехуровневого компаратора на элементах микросхемы D2, звукового генератора на элементах D3.1...D3.3, узла коммутации на транзисторе и реле К1, а также блока питания со стабилизатором напряжения на микросхеме D1.



Порог срабатывания компараторов устанавливается при настройке резисторами, отмеченными на схеме звездочкой "*". Их значения указаны на схеме ориентировочно. Настройка устройства производится при помощи ЛАТРА, изменяя напряжение питания на штекере ХР1. При этом резистором R15 устанавливаем превышение порога 245 В (на выходе D2/8 появится лог. "1"), а резистором R14 - снижение напряжения ниже 170 В (на выходе D2/8 лог. "0"). Для настройки удобно использовать многогабаритные регулировочные резисторы.

Настройку схемы лучше начинать с проверки работоспособности узла, показанного на рис. 1.34. При нажатии на кнопку ВКЛ (SB1), реле К1 срабатывает с задержкой примерно в 1 секунду и контактами К1.2 блокирует кнопку. Время задержки включения реле зависит от номинала емкости С2 и резистора R7. Выключение реле К1 может производиться кнопкой ОТКЛ (SB2) или же от схемы автоматики, когда на выходе микросхемы D3/11 появится импульс или лог. "1" (при выходе напряжения за допуск).

Вариант № 6

КОДОВЫЙ ВКЛЮЧАТЕЛЬ

Предлагаемая схема может найти применение в любых устройствах, где требуется ограничить доступ посторонних к переключению режимов. В зависимости от того, что подключено на выходе схемы (электромагнит, реле, сигнализация и т. д.), назначение может быть самым разным, например отключение режима охранной сигнализации.

В простейшем варианте, совместно с электромагнитом, схема может быть использована в качестве кодового замка. Его открывание производится набором известного ограниченному кругу лиц кода. Код состоит из 4 цифр (из 10 возможных). Кнопки с определенными цифрами необходимо нажать в заданной последовательности. Это позволяет иметь не менее 5040 возможных вариантов кода.

Код легко и оперативно можно сменить, переставив зажимы проводов с кнопками в любой последовательности. При установке кода нежелательно занимать цифры последовательного ряда (1, 2, 3, 4). Лучше, если код будет состоять из цифр вразброс, например: 9, 3, 5, 0.

Схема кодового устройства (рис. 1.38) собрана на двух микросхемах КМОП серии 561 ТМ2 (возможна замена на 564ТМ2). что обеспечивает высокую надежность и экономичность работы. Потребление схемой микротока позволяет легко выполнить, при необходимости, автономное питание. По дойдет любой, даже не стабилизированный источник постоянного напряжения 4...15 В.

Работает электрическая схема следующим образом. В начальный момент, при подаче питания, цепь из конденсатора С1 и резистора R1 формирует импульс обнуления триггеров (на выходах 1 и 13 микросхем будет лог. "0").


При нажатии на кнопку первой цифры кода (на схеме - SB4), в момент ее отпускания триггер D1.1 переключится, т. е. на выходе D1/1 появится лог. "1", так как на входе D1/5 есть лог. "1".

При нажатии очередной кнопки, если на входе D соответствующего триггера имеется лог. "1", т. е. предыдущий сработал, то лог. "1" появится и на его выходе.

Последним срабатывает триггер D2.2 , а чтобы схема не осталась в таком состоянии надолго, используется транзистор VT1. Он обеспечивает задержку обнуления триггеров. Задержка выполнена за счет цепи заряда конденсатора С2 через резистор R6. По этой причине на выходе D2/13 сигнал лог. "1" будет присутствовать не более 1 секунды. Этого времени вполне достаточно для срабатывания реле К1 или электромагнита. Время, при желании, легко можно сделать значительно больше, применив конденсатор С2 большей емкости.

В процессе набора кода нажатие любой ошибочной цифры обнуляет все триггеры. Если сигнал управления транзистором VT1 снимать с выхода не последнего триггера (например с вывода D2/12), то будет ограничено необходимое время на нажатие цифр кода. В этом случае даже при правильном, но медленном наборе кода выходной сигнал не появится.

Размещается схема вблизи кнопочной панели.

Все используемые детали, за исключением транзистора VT2, могут быть любого типа. Транзистор VT2 применен с большим коэффициентом усиления, и в случае использования в качестве нагрузки вместо реле электромагнита его нужно заменить на более мощный из серии КТ827.

Для открывания защелки дверного замка лучше использовать не электромагнит, а электромоторчик с редуктором. Такие узлы используются в составе автомобильных сигнализаций для автоматической блокировки дверей (их можно приобрести в магазине). Они потребляют небольшой ток (60...150 мА от 12 В) по сравнению с электромагнитом и позволяют иметь источник питания небольшой мощности, что особенно важно для автономного питания.

Вариант №7

Подключение удаленного датчика

Если же необходимо подключить удаленный датчик и провода невозможно скрыть, то шлейф охраны должен срабатывать при любом нарушении цепи (разрыве или замыкании).


Рис. 2. 5. Электрическая схема для подключения удаленного датчика

Традиционное построение такой схемы связано с включением датчика последовательно с резистором в плечо моста. При разбалансе моста формируется сигнал срабатывания В этом случае по цепи хранного шлейфа должен протекать ток более 5 мА, что не экономично, так как требуется мощный источник автономного питания Аналогичную задачу, но работая в импульсном режиме, выполняет схема на рис. 2.5 - она потребляет не более 1,5 мА.

Вариант № 8

Блокиратор нелегального подключения к линии

О необходимости установки такого устройства приходится задумываться в случае получения счета с АТС за междугородные разговоры, которых вы не вели. Ведь телефонные линии не защищены от несанкционированного подключения и появились мошенники, этим пользующиеся. В продаже уже появились блокираторы промышленного изготовления, но пока они неоправданно дорогие. Использование современной элементной базы позволяет сделать блокиратор довольно простым и миниатюрным.

Предлагаемое устройство размещается внутри ТА и позволяет заблокировать любые "пиратские" разговоры по данной линии с любого другого телефона. При этом подразумевается, что к линии не требуется подключать другие параллельные телефоны, - все остальные ТА схемой будут считаться "пиратскими".


Рис. 3.6. Электрическая схема блокиратора

В основе работы схемы, рис. 3.6, используется пороговое устройство на транзисторе VT1, который контролирует уровень напряжения в ТЛ. Как известно, при поднятии трубки с аппарата, напряжение в линии падает с 60 до 5...15 В (зависит от сопротивления цепей ТА). Режим работы VT1 настраивается резистором R2 так, чтобы он при напряжении ниже +18 В запирался. При этом транзистор VT2 током через резисторы R3-R4 откроется, что приведет к срабатыванию оптронного ключа VS1.1. Резистор R7 закоротит ТЛ, что воспрепятствует импульсному набору номера на время заряда С2. Как только С2 зарядится - сработает ключ VS1.2 и разрядит С1. Этот процесс периодически повторяется, что исключает фиксацию схемы в режиме закорачивания линии после однократного срабатывания блокировки. Конденсатор С1 обеспечивает нечувствительность схемы к сигналу вызова в линии.

Устройство подключается параллельно звонку (или схеме звукового сигнализатора) до разделительного конденсатора так, чтобы при поднятии трубки оно отключалось контактами, связанными с положением трубки (S1). В этом случае не потребуется отключать устройство от линии при использовании собственного ТА, что удобно при эксплуатации.

Вариант № 9

Простой импульсный блок питания на 15 Вт

Данный источник может применяться для питания любой нагрузки мощностью до 15...20 Вт и имеет меньшие габариты, чем аналогичный, но с понижающим трансформатором, работающим на частоте 50 Гц.

Источник питания выполняется по схеме однотактного импульсного высокочастотного преобразователя, рис. 5.1. На транзисторе собран автогенератор, работающий на частоте 20...40 кГц (зависит от настройки). Частота настраивается емкостью С5. Элементы VD5, VD6 и С6 образуют цепь запуска автогенератора.

Во вторичной цепи после мостового выпрямителя стоит обычный линейный стабилизатор на микросхеме, что позволяет иметь на выходе фиксированное напряжение, независимо от изменения на входе сетевого (187...242 В).

В схеме применены конденсаторы: С1, С2 типа К73-16 на 630 В; СЗ - К50-29 на 440 В; С4 - К73-17В на 400 В; С5 - К10-17; С6 - К53-4А на 16 В; С7 и С8 типа К53-18 на 20 В. Резисторы могут быть любыми. Стабилитрон VD6 можно заменить на КС147А.

Импульсный трансформатор Т1 выполняется на ферритовом сердечнике М2500НМС-2 или М2000НМ9 типоразмера Ш5х5 (сечение магнитопровода в месте расположения катушки 5х5 мм с зазором в центре). Намотка сделана проводом марки ПЭЛ-2. Обмотка 1-2 содержит 600 витков провода диаметром 0,1 мм; 3-4 - 44 витка диаметром 0,25 мм; 5-6 - 10 витков тем же проводом, что и первичная обмотка.


Электрическая схема импульсного блока питания на 15 Вт

В случае необходимости вторичных обмоток может быть несколько (на схеме показана только одна), а для работы автогенератора необходимо соблюдать полярность подключения фазы обмотки 5-6 в соответствии со схемой.

Настройка преобразователя заключается в получении устойчивого возбуждения автогенератора при изменении входного напряжения от 187 до 242 В. Элементы, требующие подбора, отмечены звездочкой "*". Резистор R2 может иметь номинал 150...300 кОм, а конденсатор С5 - 6800...15000 пФ. Для уменьшения габаритов преобразователя в случае меньшей снимаемой во вторичной цепи мощности номиналы электролитических фильтрующих конденсаторов (СЗ, С7 и С8) можно уменьшить. Их величина связана с мощностью нагрузки соотношением:

Вариант №11

Усилитель мощности УКВ.

Идея использовать полевой транзистор КП904А в усилителе мощности диапазона 2 м возникла поневоле - во время работы в "тропо" вышел из строя транзистор КТ931А, а заменить его было нечем. Тогда выбор пал на КП904А (по справочным данным он работоспособен до частоты 400 МГц). Усилитель на этом транзисторе некритичен к качеству источника питания (в моем случае он питается нестабилизированным напряжением +55 В при емкости выходного конденсатора источника питания 10000 мкФ), не требует принятия специальных мер для стабилизации тока покоя транзистора и имеет очень простую схему (рис.1). При входной мощности 4...5 Вт выходная мощность составляет 20...25 Вт на нагрузке 75 Ом.

Вариант №12

Микропередатчик.

По моему мнению это наилучшая схема микропередатчика во всём рунете.. Я собрал 5 штук таких передатчиков и убедился - схема отличная, в настройке, практически, не нуждается (нужно только подобрать частоту растяжением или сжатием витков катушки L1).

Приемуществ в данной схеме масса:
1.Высокая стабильность частоты (Частота не уходит при касании рукой антенны, катушки)
2.Высокая чувствительность
3.Высокая выходная мощность

Технические характеристики:
Рабочая частота - 87..108Мгц около 96Мгц
Тип модуляции - частотная
Дальность приёма - 100..800м (Чтобы радиус действия был максимален, нужно выбирать приёмник с максимальной чувствительностью,антенна должна располагаться вертикально и удалена от металлических предметов, не нужно располагать жучёк рядом с телевизором, радиоприёмником)
Питание - 9в
Потребляемый ток - 25мА
Время непрерывной работы - 14 часов, а с хорошей батарейкой все 18 часов

VT1- КТ3130Б9 (можно заменить на КТ315Б, с наибольшим усилением, не менее 200)
VT2-КТ368А9 (можно заменить на КТ368АМ)
VT3-КТ3126Б (транзисторы распространённые, найти легко)

R1 - 12k R2 - 220..300k R3 - 3,9k R4 - 20k R5 - 20k R6 - 200Om R7 - 200Om C1 - 100p C2 - 0.1m C3 - 0.1 C4 - 500..1000p C5 - 22p C6 - 12p C7 - 39p C8 - 33n

Вариант №13

Для повышения эффективности и дальности SSB-связей используют ограничение сигнала по высокой (ВЧ) или низкой (НЧ) частоте. Лучшими параметрами обладают ВЧ-ограничители, в которых обработка сигнала происходит на промежуточной частоте. Они позволяют увеличить среднюю мощность сигнала передатчика на 6...9дБ. Незначительно, на 1...2 дБ, им уступают низкочастотные ограничители (сигнал обрабатывается в микрофонном усилителе). Но в то же время изготовить и настроить НЧ ограничитель значительно проще.

На рис. 1 и 2 предлагаются схемы схемы НЧ ограничителей, эффективность которых значительно превосходит ранее опубликованные разработки автора . Схема на рис. 1 содержит всего два каскада, первый из которых на транзисторе VT1 представляет собой логарифмирующий усилитель. В качестве логарифмирующих элементов использованы диоды VD1 и VD2, включенные встречно-параллельно в цепь отрицательной обратной связи. Применение германиевых диодов позволяет получить выходное напряжение усилителя до 200 мВ эфф., а применение кремниевых - до 600 мВ эфф.


На транзисторе VT2 собран эмиттерный повторитель, позволяющий подключать усилитель практически к любому смесителю. Для регулировки уровня выходного ограниченного сигнала служит резистор R4. Применение этого резистора на выходе ограничителя позволяет использовать его как бы в качестве регулятора усиления по ПЧ в режиме передачи. Резисторы R1 и R5 предотвращают самовозбуждение каскада по постоянному току. Для этого в схеме (рис. 1) подбором резистора R2* устанавливается напряжение на коллекторе VT 1, равное +6 В.

Вариант №14

ПРОСТОЙ ОГРАНИЧИТЕЛЬ РЕЧЕВОГО СИГНАЛА

В схеме по рис. 2 такое же напряжение на коллекторах VT1 и VT2 устанавливается подбором резисторов R2* и R5* соответственно. Приведенные в статье схемы были реализованы автором в конструкциях SSB-трансиверов: прямого преобразования, с ЭМФ, с кварцевым фильтром. При использовании практически любого типа динамического микрофона ограничители показали хорошее качество получаемого SSB-сигнала и отсутствие перемодуляции при значительных изменениях уровней сигналов, подаваемых с микрофона.


Вариант №15

Радиомикрофон 88-108 МГц

Отличительной особенностью данной схемы является эмиттерная модуляция, осуществляемая с помощью транзистора VT3.
Для лучшей компоновки в корпусе, ширина платы разработана под длину элемента типа "Корунд", но первостепенное значение в минимизации изделия имеет принцип электрического решения самой схемы.
При применении микрофона МКЭ-3 диапазон частот составляет 50...15000 Гц.
Катушка L1-бескаркасная, имеет пять витков медного посеребрянного провода диаметром 0,9 мм на оправе диаметром 7 мм.
Все резисторы типа МЛТ-0,125, электролиты С1-С4, С6 и С8 типа К50-35, высокочастотные конденса
торы С5 и С8 типа КТ-1. Длину антенны можно уменьшить до 500 мм.

Вариант №16

РадиомикрофонHz

Этот передатчик при скромных габаритах позволяет передавать информацию на расстояние до 300 метров. Прием сигнала может вестись на любой приемник УКВ ЧМ диапазона. Для питания подходит любой источник с напряжением 5...15 вольт.
Схема передатчика приведена на рисунке (1102_2).
Задающий генератор выполнен на транзисторе КП303. Частота генерации определяется эл-тами L1, C5, C3, VD2. Частотная модуляция осуществляется путем подачи модулирующего напряжения звуковой частоты на варикап VD2 типа КВ109. Рабочая точка варикапа задается напряжением, поступающим через резистор R2 со стабилизатора напряжения. Стабилизатор включает в себя генератор стабильного тока на полевом транзисторе VT1 типа КП103, стабилитрон VD1 типа КС147А и конеднсатор С2.
Усилитель мощности выполнен на транзисторе VT3 типа КТ368. Режим его работы задается резистором R4. В качестве антенны используется кусок провода длиной 15...20 см.

Дроссели Dr1 Dr2 могут быть любые индуктивностью 10...150 uH. Катушки L1 и L2 наматываются на полистироловых караксах диаметром 5 мм с подстроечными сердечниками 100ВЧ или 50ВЧ. Количество витков - 3.5 с отводом от середины, шаг намотки 1 мм, провод ПЭВ 0.5 мм. Вместо КП303 подойдет КП302 или КП307.
Настройка заключается в установке необходимой частоты генератора конденсатором С5, получения максимальной выходной мощности путем подбора сопротивления резистора R4 и подстройке резонансной частоты контура конденсатором С10.

Вариант №17

Преобразователь напряжения

Предлагаю простую и надежную схему преобразователя напряжения для управления варикапами в различных конструкциях, который вырабатывает 20 В при питании от 9 В. Выбран вариант преобразователя с умножителем напряжения, поскольку он считается самым экономичным. Кроме того, он не создает помех радиоприему. На транзисторах VT1 и VT2 собран генератор импульсов, близких к прямоугольным. На диодах- VD1...VD4 и конденсаторах С2...С5 собран умножитель напряжения. Резистор R5 и стабилитроны VD5, VD6 образуют параметрический стабилизатор напряжения. Конденсатор С6 на выходе является ВЧ-фильтром. Ток потребления преобразователя зависит от напряжения питания и количества варикапов, а также от их типа. Устройство желательно заключить в экран для снижения помех от генератора. Правильно собранное устройство работает сразу и некритично к номиналам деталей.

Вариант №18

Блок зажигания

Как видно из принципиальной схемы блока, показанной на рис.1, основные ее изменения относятся к преобразователю, т.е. генератору зарядных импульсов, питающих накопитель-конденсатор С2. Упрощена цепь запуска преобразователя, выполненного, как и прежде, по схеме однотактного стабилизированного блокинг-генератора. Функции пускового и разрядного диодов (соответственно VD3 и VD9 по прежней схеме) выполняет теперь один стабилитрон VD1. Такое решение обеспечивает более надежный запуск генератора после каждого цикла искрообразования путем значительного увеличения начального смещения на эмиттерном переходе транзистора VT1. Это не снизило тем не менее общей надежности блока, поскольку режим транзистора ни по одному из параметров не превысил допустимых значений.

Изменена и цепь зарядки конденсатора задержки С1. Теперь он после зарядки накопительного конденсатора заряжается через резистор R1 и стабилитроны VD1 и V03. Таким образом, в стабилизации участвуют два стабилитрона, суммарным напряжением которых при их открывании и определяется уровень напряжения на накопительном конденсаторе С2. Некоторое увеличение напряжения на этом конденсаторе скомпенсировано соответствующим увеличением числа витков базовой обмотки II трансформатора. Средний уровень напряжения на накопительном конденсаторе уменьшен до 345...365 В, что повышает общую надежность блока и обеспечивает вместе с тем требуемую мощность искры.

В разрядной цепи конденсатора С1 использован стабисторVD2, позволяющий получить такую же степень перекомпенсации при уменьшении бортового напряжения, как три-четыре обычных последовательных диода. При разрядке этого конденсатора стабилитрон VD1 открыт в прямом направлении (подобно диоду VD9 исходного блока).

Конденсатор СЗ обеспечивает увеличение длительности и мощности импульса, открывающего тринистор VS1. Это особенно необходимо при большой частоте искрообразования, когда средний уровень напряжения на конденсаторе С2 существенно снижается.

Вариант №19

Электронный регулятор

Электронный регулятор напряжения в системе автомобильного электрооборудования уже зарекомендовал себя как надежный, стабильный и долговечный узел. Ниже описан один из вариантов такого регулятора, в течение длительного времени испытанного на разных автомобилях и показавшего хорошие результаты. Особенностями регулятора являются использование триггера Шмитта в узле управления выходным транзистором и наличие температурной зависимости регулируемого напряжения. Регулятор смонтирован в корпусе реле-регулятора РР-380 и полностью его заменяет.

Первая из указанных особенностей позволила снизить мощность рассеяния на выходном транзисторе за счет большой скорости его переключения. Вторая позволяет автоматически уменьшать напряжение зарядки аккумуляторной батареи при повышении температуры в моторном отсеке. Известно, что зарядное напряжение летом должно быть ниже, чем зимой. Невыполнение этого условия приводит к кипению электролита летом и недозарядке батареи зимой.

Принципиальная схема электронного регулятора изображена на рис. 1. Регулятор состоит из трех функциональных узлов: входного узла управления, состоящего из резистивного делителя напряжения R1-R3, стабистора VD1 и стабилитрона VD2, триггера Шмитта

на транзисторах VT1.VT2 и выходного ключа на транзисторе VT3 и диоде VD4. Дроссель L1 служит для снижения пульсации напряжения на входе триггера, которые ухудшают эффективность регулирования. Элементы VD1 и VD2 формируют образцовое напряжение. Подводимое к входу триггера Шмитта напряжение равно разности между регулируемой частью входного напряжения и образцовым. Благодаря температурной зависимости напряжения на стабисторе VD1 и эмиттеряом переходе транзистора VT1 происходит уменьшение образцового напряжения при повышении температуры. В результате напряжение, подводимое к аккумуляторной батарее, уменьшается примерно на 10 мВ с повышением температуры на 1°С, что и необходимо для правильной эксплуатации батареи.

Триггер Шмитта выполнен по классической схеме. Конденсатор С1 не допускает возникновения высокочастотного возбуждения этого транзистора, когда он находится в линейном режиме, и не влияет на скорость переключения триггера. Разность между порогами напряжения переключения определяется соотношением номиналов резисторов R6 и R8 и равна примерно 0,03 В

Вариант №20

Бесконтактный прерыватель

Принципиальная схема бесконтактного прерывателя показана на рис.1. Датчик представляет собой катушку 11, которая вместе с конденсатором СЗ входит в состав генератора, выполненного на транзисторах VT1.1, VT1.2 микросборки VT1. При вхождении зубца диска в зазор маг-нитопровода катушки происходит срыв колебаний генератора, так как энергия электромагнитного поля катушки расходуется на образование вихревого тока в зубце.


В этот момент ток коллектора транзистора VT1.1 уменьшается, вызывая увеличение напряжения на коллекторе. Триггер Шмитта, выполненный на транзисторах VT2, VT3, формирует сигнал с крутыми фронтом и спадом. Транзистор VT4 работает в режиме переключения.

Вхождение зуба переключающего диска в зазор датчика соответствует моменту замыкания контактов прерывателя. Эквивалентный угол замкнутого состояния контактов определяется в основном угловой шириной зубца диска; этот угол выбран равным 50°. Небольшая погрешность в определении угла замкнутого состояния контактов обусловлена гистерезисом триггера Шмитта.

Температурная стабилизация генератора обеспечена отрицательной обратной связью по постоянному току через резистор R2, включенный в цепь эмиттера транзистора VT1.1, диодной термокомпенсацией (диодное включение транзистора VT1.2) и применением согласованной пары транзисторов, размещенных на одном кристалле. Ток через эмит-терный переход транзистора VT1.2 вы бран небольшим, около 1,5 мА. Благодаря этим мерам стабильность режима генератора сохраняется в температурном интервале -48...+90°С.

Вариант № 21
АВТОМОБИЛЬНЫЙ РАДИОСТОРОЖ

В связи с ростом числа автомобилей и отдаленностью гаражей от квартир актуальным стал вопрос охраны машин в ночное время во дворах домов. Если угнать автомобиль довольно сложно, то снять эмблему, вытащить магнитолу или аккумулятор не составляет большого труда. Большинство противоугонных устройств усложняют только запуск мотора автомобиля, но не защищают от, хищения содержимого.

Есть устройства, срабатывающие на качание, исполнительным узлом которых является сирена или автомобильный сигнал. В ночное время они будят не только хозяина, но и соседей. Отключение аккумулятора полностью выводит такие устройства из строя.

От всех перечисленных недостатков свободен предлагаемый радиосторож. Рассмотрим его работу.


Радиосторож состоит из высокочастотного генератора, модулятора и датчика качания. В дежурном режиме датчик качания разомкнут, и питание подается только на генератор. Приемник, находящийся в квартире, настраивается на несущую частоту генератора по пропаданию шумов в громкоговорителе.

Таким образом, даже при отключении аккумуляторе срабатывание радиосторожа определяется по резком) возрастанию шумов, и это также является признаком исправности линии "машина - квартира".

При прикосновении к автомобилю кратковременно замыкается датчик качания В1 (Рис.2). Через его контакты подается питание на модулятор и заряжается конденсатор С 1.

Варианрт №22

Передатчик видеосигнала
Передатчик предназначен для амплитудно-частотной модуляции видеосигнла с видеоаппаратуры (видеокамер, тюнеров, магнитофонов, персональных компьютеров и т.д.) на телевизионный приемник. Предатчик подключают непосредственно к видеоаппарату, что исключает необходимость иметь видеовход на телевизионном приемнике.
Совместив такой передатчик с бескорпусной видеокамерой, нетрудно получить установку для бесппроводного наблюдения, а для экономичной работы батарей питания рекомендуется совместить это устройство с инфракрасным детектором присутствия, серийно выпускающимся многими зарубежными фирмами и стоящим относительно недорого, например детектором "REFLEX" фирмы "TEXECOM:" способным улавливать постороннее вмешательство, устойчив на ложное срабатывание, электромагнитное и радиочастотное излучение.

Дополнив схему видеопередатчика усилителем высокой частоты, выполненном на одном транзисторе типа КТ325, можно увеличить выходную мощность передатчика, и соответственно дальность беспроводной связи с телевизионным тюнером.
Принципиальная схема передатчика содержит один транзистор VT1 типа КТ603Г. Предатчик настраивают на частоту одного из свободных от телевизионного вещания каналов (например, 1...5 канал). Подстройка осуществляется с помощью подстроечного конденсатора С4, которым добиваются захвата немодулированного сигнала. Точная настройка передатчика производится резистором R1. Сигнал от видеоприбора подается на вход передатчика в цепь эммитера транзистора через резистор R6 и конденсатор С9.
Промодулированный видеосигнал с коллектора поступает на колебательный контур L1C4 в антенну. Ток в точке А подбирается в пределах 30...35 мА.
Правильно собранный передатчик работает сразу. В случае отсутствия генерации необходимо проверить напряжение на эммитере транзистора VT1, причем напряжение на нем должно отличаться от напряжения на базе на 1...2 В в большую сторону.
Передатчик следует питать от стабилизированного источника питания. Антанна должна иметь жесткую конструкцию, например типа телескопической.
Вместо транзистора КТ603 можно использовать КТ608Б или другой, с подходящими параметрами.
Передатчик желательно поместить в экран с целью уменьшения помех.

Вариант №23

Клоп на 1.5 В

Предлагаемая схема предназначена для прослушивания переговоров в помещениях на небольшом расстоянии. Чувствительность микрофона хватает для уверенного восприятия слабого звука (шепот, тихий разговор) на расстоянии 3...4 метра от микрофона. Дальность действия устройства - около 50 метров (при длине антенны передатчика 30...50 см). Схему передатчика желательно уменьшить до минимальных размеров (чтобы его не было видно). При использовании устройства на небольших расстояниях (до 15 м) питание можно снизить до 1,5...3 В. Питать передатчик желательно от малогабаритных элементов. Ток потребления составляет 3...4 мА.

Рабочая частота передатчика - 66...74 Мгц.
Данные катушки L1 - 6 витков провода ПЭВ-2 0,5 мм и намотана на каркасе диаметром 4 мм с шагом намотки 1...1,5 мм. Частота генератора изменяется сдвиганием (раздвиганием) витков катушки L1.

Вариант №24

Жучок

Вот представляю вам конструкцию свободную от стандартных «интернет» ошибок и легкой повторяемостью.
Она имеет стабильные и честные параметры :
Iпотр=25-30мА при Uпит=9В
Дальнобойность 350 метров (проверялось в поле с приемником китайского производства стоимостью 300 рублей)
Чувствительность по микрофону как у всех подобных (в тихой комнате слышно тиканье настенных часов)

Было изготовлено около 50 экземпляров из них не заработало сразу 5. Точнее пятый был некачественно пропаян. Схема не отличается оригинальностью и какими либо извращенными схемотехническими ходами. Первоочередными задачами были: легкость повторения, небольшие габариты и высокий КПД.

Устройство собрано: электретный микрофон как все знают в своем составе он имеет полевой транзистор, поэтому на него нужно подавать напряжения питания для этого установлен резистор R1. Конденсатор С2 корректирует низкочастотную составляющею и блокирует ВЧ связь микрофона и антенны. Переменную составляющею сигнала микрофона фильтрует С3. Теперь сигнал еще дополнительно усиливается для получения нужной глубины девиации ЗЧ усилитель собран на транзисторе VT1. Подбором резистора смещения R2 в цепи базы в транзисторе VT1 нужно добиться половины напряжения питания на его коллекторе, хотя это и не обязательно. Усилитель ЗЧ и генератор ВЧ связаны между собой непосредственно. Сигнал модуляции НЧ поступает сразу на базу транзистора VT2 и на нем собран генератор ВЧ по схеме банальной « трехточьке». Добиться устойчивой генерации можно изменяя емкость обратной связи С7 в небольших приделах или замена транзистора на другой (но это процедура требуется кране редко). Сигнал ВЧ выделяется на контуре состоящим из элементов L1С6. Этот контур настроен на частоту 96 мегагерц в пределах 5-6 МГц можно ее изменять сдвигая или раздвигая витки каким либо не металлическим предметом. Подойдет спичка деревянная зубочистка и.т.п. Теперь промодулированый ВЧ сигнал через С8 поступает на усилитель ВЧ собранный на транзисторе VT3 в его базываю цепь включен контур состоящий из катушке L2 и конденсаторов C9 и C10 на этот контур служит активной нагрузкой транзистора VT3 при настройке передатчика нужно его настроить в резонанс с частотой генератора. Это можно сделать, подключив миллиамперметр в цепь питания всего устройства и настраивать по достиже

Для чего нужен металлоискатель даже не нужно говорить. Это не только, в некоторых случаях, практичная вещь для поиска потерянного, но и возможность побыть романтиком, в поисках затерянных сокровищ или просто старой металлической утвари.
В этой статье мы приведем описание и электросхему чувствительного металлоискателя. Особенностью данного металоискателя является хорошая чувствительность при поиске металлов со слабыми ферромагнитными свойствами, таких как, например, медь, олово, серебро. Значительный эффект дает применение кварца.

Электросхема чувствительного металоискателя

Металлоискатель, принципиальная схема которого приведена на рис. 1,а, состоит из измерительного генератора, собранного на транзисторе VT1, и буферного каскада - эмиттерного повторителя, собранного на транзисторе VT2, отделенных кварцевым резонатором ZQ1 от индикаторного устройства - детектора на диоде VD2 с усилителем постоянного тока на транзисторе VT3. Нагрузкой усилителя служит стрелочный прибор С током полного отклонения 1 мА. Вследствие высокой добротности кварцевого резонатора малейшие изменения частоты измерительного генератора будут приводить к уменьшению полного сопротивления последнего, как это видно из характеристики, приведенной на рис. 1,б, а это, в конечном итоге, повысит чувствительность прибора и точность измерений. Подготовка к поиску заключается в настройке генератора на частоту параллельного резонанса кварца, равную 1 МГц. Эта настройка производится конденсаторами переменной емкости С2 (грубо) и подстроечным конденсатором C1 (точно) при отсутствии около рамки металлических предметов. Поскольку кварц является элементом связи между измерительной и индикаторной частями устройства, его сопротивление в момент резонанса велико и минимальное показание стрелочного прибора свидетельствует о точной настройке устройства.
Уровень чувствительности регулируется переменным резистором R8. Особенностью устройства является кольцевая рамка L1, изготовленная из отрезка кабеля. Центральную жилу кабеля удаляют и вместо нее продергивают шесть витков провода типа ПЭЛ 0,1–0,2 мм длиной 115 мм. Конструкция рамки показана на рис 1,в. Такая рамка обладает хорошим электростатическим экраном.

Рис. 1. Малогабаритный чувствительный металлоискатель

Жесткость конструкции рамки металлоискателя обеспечивается размещением ее между двумя дисками из оргстекла или гетинакса диаметром 400 мм и толщиной 5–7 мм. В приборе использованы транзисторы КТ315Б, опорный диод - стабилитрон 2С156А, детекторный диод типа Д9 с любым буквенным индексом. Частота кварца может быть в интервале частот от 90 кГц до 1,1 МГц. Кабель - типа РК-50.

Металлодетекторы глубинного типа способны обнаружить предметы в грунте на большом расстоянии. Современные модификации в магазинах стоят довольно дорого. Однако в данном случае можно попробовать изготовить металлодетектор своими руками. С этой целью в первую очередь рекомендуется ознакомиться с конструкцией стандартной модификации.

Схема модификации

Собирая металлодетектор своими руками (схема показана ниже), нужно помнить, что основными элементами устройства являются демпфер на микроконтроллере, конденсатор и ручка с держателем. Блок управления в устройствах состоит из набора резисторов. Некоторые модификации производятся на приводных модуляторах, которые работают при частоте 35 Гц. Непосредственно стойки выполнены с узкими и широкими пластинами тарельчатой формы.

Инструкция по сборке простой модели

Собрать металлодетектор своими руками довольно просто. В первую очередь рекомендуется заготовить трубку и приделать к ней ручку. Для установки потребуются резисторы высокой проводимости. Рабочая частота устройства зависит от многих факторов. Если рассматривать модификации на диодных конденсаторах, то у них высокая чувствительность.

Рабочая частота таких металлоискателей составляет около 30 Гц. Максимальное расстояние обнаружения предмета у них равняется 25 мм. Работать модификации способны на батарейках литиевого типа. Микроконтроллеры для сборки потребуются с полярным фильтром. Многие модели складываются на датчиках открытого типа. Также стоит отметить, что эксперты не рекомендуют использовать фильтры высокой чувствительности. Они сильно снижают точность обнаружения металлических предметов.

Модель серии "Пират"

Сделать металлодетектор "Пират" своими руками можно только на базе проводного контроллера. Однако в первую очередь для сборки заготавливается микропроцессор. Для его подключения понадобится Многие эксперты рекомендуют применять сеточные конденсаторы с емкостью 5 пФ. Проводимость у них должна поддерживаться на уровне 45 мк. После можно приступать к пайке блока управления. Стойка должна быть прочной и выдерживать вес пластины. Для моделей на 4 В не рекомендуются применять тарелки диаметром более 5,5 см. Индикаторы системы не обязательно устанавливать. После закрепления блока останется лишь установить батарейки.

Использование рефлекторных транзисторов

Сделать с рефлекторными транзисторами металлодетектор своими руками довольно просто. В первую очередь эксперты рекомендуют заняться установкой микроконтроллера. Конденсаторы в данном случае подойдут трехканального типа, а проводимость у них не должна превышать 55 мк. При напряжении 5 В они обладают сопротивлением примерно 35 Ом. Резисторы у модификаций применяются в основном контактного типа. Они обладают отрицательной полярностью и хорошо справляются с электромагнитными колебаниями. Также стоит отметить, что при сборке разрешается использовать Максимальная ширина пластины для такой модификации равняется 5,5 см.

Модель с конвекционными транзисторами: отзывы специалистов

Собрать металлодетектор своими руками можно только на базе коллекторного контроллера. При этом конденсаторы используются на 30 мк. Если верить отзывам экспертов, то лучше не стоит применять мощные резисторы. В данном случае максимальная емкость элементов должна составлять 40 пФ. После установки контроллера стоит заняться блоком управления.

Данные металлоискатели получают хорошие отзывы за надежную защиту от волновых помех. С этой целью используется два фильтра диодного типа. Модификации с системами индикации очень редко встречаются среди самодельных модификаций. Также стоит отметить, что блоки питания должны работать при низком напряжении. Таким образом, батарея долго прослужит.

Использование хроматических резисторов

Своими руками? Модель с хроматическими резисторами собрать довольно просто, но следует учитывать, что конденсаторы для модификаций разрешается применять лишь на предохранителях. Также эксперты указывают на несовместимость резисторов с проходными фильтрами. Перед началом сборки важно сразу заготовить для модели трубку, которая будет ручкой. Затем устанавливается блок. Целесообразнее подбирать модификации на 4 мк, которые работают при частоте 50 Гц. У них малый коэффициент рассевания и высокая точность измерения. Также стоит отметить, что искатели данного класса смогут успешно работать в условиях повышенной влажности.

Модель с импульсным стабилитроном: сборка, отзывы

Устройства с импульсными стабилитронами выделяются высокой проводимостью. Если верить отзывам специалистов, то самодельные модификации способны работать с предметами разного размера. Если говорить про параметры, то точность обнаружения у них равняется примерно 89 %. Начинать сборку устройства стоит с заготовки стойки. Затем монтируется ручка для модели.

Следующим шагом устанавливается блок управления. Затем монтируется контроллер, который работает от литиевых батарей. После установки блока можно заняться пайкой конденсаторов. Отрицательное сопротивление у них не должно превышать 45 Ом. Отзывы экспертов указывают на то, что модификации данного типа можно производить без фильтров. Однако стоит учитывать, что у модели будут серьезные проблемы с волновыми помехами. При этом будет страдать конденсатор. В итоге батарея у моделей данного типа быстро разряжается.

Применение низкочастотного трансивера

Низкочастотные трансиверы у моделей значительно снижают точность работы приборов. Однако стоит отметить, что модификации данного типа способны успешно работать с предметами небольшого размера. При этом у них малый параметр саморазряда. Для того чтобы собрать модификацию своими руками, рекомендуется воспользоваться проводным контроллером. Передатчик чаще всего используется на диодах. Таким образом, проводимость обеспечивается на отметке в 45 мк при чувствительности 3 мВ.

Некоторые эксперты рекомендуют устанавливать сеточные фильтры, которые повышают защищенность моделей. Для поднятия проводимости используются модули только переходного типа. Основными недостатками таких устройств считается перегорание контроллера. При такой поломке проблематично сделать ремонт металлодетектора своими руками.

Использование высокочастотного трансивера

На высокочастотных трансиверах собрать простой металлодетектор своими руками можно только на базе переходного контроллера. Перед началом установки стандартно заготавливается стойка под пластину. Проводимость контроллера в среднем равняется 40 мк. Многие специалисты не используют при сборке контактные фильтры. У них высокие тепловые потери, и они способы работать при частоте 50 Гц. Также стоит отметить, что для сборки металлоискателя используются литиевые батарейки, которые подзаряжают блок управления. Непосредственно датчик у модификаций устанавливается через конденсатор, у которого емкость не должна превышать 4 пФ.

Модель с продольным резонатором

На рынке часто встречаются устройства с продольными резонаторами. Они выделяются среди своих конкурентов высокой точностью определения предметов, и при этом могут работать при повышенной влажности. Для того чтобы самостоятельно собрать модель, заготавливается стойка, а тарелку стоит применять диаметром не менее 300 мм.

Также стоит отметить, что для сборки устройства потребуется контактный котроллер, и один расширитель. Фильтры используются лишь на сеточной подкладке. Многие специалисты рекомендуют устанавливать диодные конденсаторы, которые работают при напряжении 14 В. В первую очередь они мало разряжают батарею. Также стоит отметить, что они обладают хорошей проводимостью по сравнению с полевыми аналогами.

Использование селективных фильтров

Сделать такой глубинный металлодетектор своими руками не просто. Основная проблема заключается в том, что в устройство нельзя установить обычный конденсатор. Также стоит отметить, что пластина для модификации подбирается размером от 25 см. В некоторых случаях стойки устанавливаются с расширителем. Многие эксперты советуют начинать сборку с установки блока управления. Он обязан работать при частоте не более 50 Гц. При этом проводимость зависит от контроллера, который используется в оборудовании.

Довольно часто его подбирают с обкладкой для повышения защищенности модификации. Однако такие модели часто перегреваются, и не способны работать с высокой точностью. Для решения данной проблемы рекомендуется использовать обычные переходники, которые устанавливаются под конденсаторные блоки. Катушка для металлодетектора своими руками изготавливается из блока трансивера.

Применение контакторов

Контакторы в устройства устанавливаются вместе с блоками управления. Стойки для модификаций используются небольшой длины, а тарелки подбираются на 20 и 30 см. Некоторые эксперты говорят о том, что устройства стоит собирать на импульсных переходниках. При этом конденсаторы можно использовать низкой емкости.

Также стоит отметить, что после установки блока управления стоит припаять фильтр, который способен работать при напряжении 15 В. В данном случае у модели будет поддерживаться проводимость на уровне 13 мк. Трансиверы чаще всего используются на переходниках. Перед включением металлоискателя на контакторе проверяется уровень отрицательного сопротивления. Указанный параметр в среднем равняется 45 Ом.

ЛУЧШИЙ МЕТАЛЛОИСКАТЕЛЬ

Почему именно Volksturm был назван лучшим металлоискателем? Главное - схема реально простая и реально рабочая. Из множества схем металлоискателей, которые я лично делал, именно здесь всё просто, глубинобойно и надёжно! Тем более при своей простоте, в металлодетекторе есть хорошая схема дискриминации - определение железо или цветной металл находится в земле. Сборка металлоискателя заключается в безошибочной пайке платы и настройке катушек в резонанс и в ноль на выходе входного каскада на LF353. Ничего тут суперсложного нет, было бы желание и мозги. Смотрим конструктивное исполнение металлоискателя и новую усовершенствованную схему Volksturm с описанием.

Так как по ходу сборки возникают вопросы, чтоб сэкономить ваше время и не заставлять перелистывать сотни страниц форума, здесь приведены ответы на 10 самых популярных вопросов. Статья в процессе написания, так что некоторые пункты будут дополнены позже.

1. Принцип работы и обнаружения целей этого металлоискателя?
2. Как проверить Работает ли плата металлоискателя?
3. Какой резонанс выбрать?
4. Какие конденсаторы лучше?
5. Как настроить резонанс?
6. Как сводить катушки в ноль?
7. Какой провод для катушек лучше?
8. Какие детали и чем можно заменить?
9. От чего зависит глубина поиска целей?
10. Питание металлоискателя Volksturm?

Принцип работы металлоискателя Volksturm

Постараюсь в двух словах о принципе работы: передача,прием и баланс индукции. В поисковом датчике металлоискателя устанавливают 2 катушки - передающую и приемную. Присутствие металла изменяет индуктивную связь между ними (в том числе и фазу), что влияет на принимаемый сигнал, который затем обрабатывается блоком индикации. Между первой и второй микросхемой стоит коммутатор управляемый импульсами генератора сдвинутого по фазе относительно передающего канала (т.е. когда передатчик работает, приемник отключен и наоборот если приемник включен передатчик отдыхает, а приемник спокойно ловит отраженный сигнал в этой паузе). Итак, вы включили металлоискатель и он пищит. Отлично, если пищит - значит многие узлы работают. Давай разберёмся почему именно он пищит. Генератор на у6Б постоянно генерирует тональный сигнал. Далее он поступает на усилитель на двух транзисторах, но унч не откроется (не пропустит тон) пока напряжение на выходе у2Б (7-й вывод) не разрешит ему этого. Данное напряжение выставляется изменением режима с помощью этого самого резистора трэш. Им надо выставить такое напряжение, чтоб унч почти открылся и пропустил сигнал с генератора. И входные пару милливольт с катушки металлоискателя пройдя усилительные каскады, превысят этот порог и он откроется окончательно и динамик запищит. Теперь проследим прохождение сигнала, точнее сигнала отклика. На первом каскаде (1-у1а) будет пару милливольт, можно до 50. На втором каскаде (7-у1Б) это отклонение увеличится, на третьем(1-у2А) будет уже пару вольт. Но без отклика везде на выходах по нулям.

Как проверить работает ли плата металлоискателя

Вообще усилитель и ключ (CD 4066) проверяется пальцем на входной контакт RX при максимальном сопротивлении сенс и максимальным фоном на динамике. Если изменение фона есть при нажатии пальцем на секунду, то ключ и операционники работают, далее подключаем катушки RX с конденсатором контура параллельно, конденсатор на катушке TX последовательно, ложим одну катушку на другую и начинаем сводить в 0 по минимальному показанию переменного тока на первой ноге усилителя U1A. Далее берем что-нибудь большое и железное и проверяем есть в динамике реакция на металл или нет. Проверим напряжение на у2Б (7-й вывод) оно должно регулятором трэш, меняться +-пару вольт. Если нет - проблема в данном каскаде ОУ. Для начала проверки платы отключаем катушки и включаем питание.

1. Должен идти звук при положении регулятора сенс на максимальное сопротивление, коснёмся пальцем на РХ - если есть реакция, все операционники работают, если нет - проверяем пальцем начиная с u2 и меняем (обследуем обвязку) нерабочего ОУ.

2. Работа генератора проверяется программой частотомер. Штекер от наушников припаять к 12 выводу CD4013 (561ТМ2) предусмотрительно выпаяв р23 (чтоб звуковую карту не спалить). В звуковой плате использовать In-lane. Смотрим частоту генерации, ее стабильность на 8192 гц. Если она сильно смещена, то надо выпаивать конденсатор с9, если и после она не четко выделена и/или много частотных всплесков рядом - заменяем кварц.

3. Проверили усилители и генератор. Если все исправно, но все равно не работает - меняем ключ (CD 4066).

Какой резонанс катушек выбрать

При подключении катушки в последовательный резонанс,увеличивается ток в катушке и общее потребление схемы. Увеличивается расстояние обнаружения цели, но это только на столе. На реальном грунте, земля будет чувствоваться тем сильнее, чем больше ток накачки в катушке. Лучше включение параллельного резонанса, а поднимать чутье входными каскадами. Да и батареек хватит намного дольше. Не смотря на то, что последовательный резонанс применяется во всех фирменных дорогих металодетекторах, в Штурме нужен именно параллельный. В импортных, дорогих приборах, хорошая схематика отстройки от земли, поэтому в этих приборах можно позволить последовательный.

Какие конденсаторы лучше установить в схему металлоискателя

Тип подключаемого к катушке конденсатора не при чём, а если экспериментально поменяли два и увидели что с одним из них резонанс лучше, то просто один из якобы 0,1 мкФ реально имеет 0,098 мкФ, а другой 0,11. Вот и разница между ними по резонансу получается. Я использовал советские К73-17 и зелёные импортные подушки.

Как настроить резонанс катушек металлоискателя

Катушка, как самый лучший вариант, получается из штукатурных терок, склеенных эпоксидной смолой с торцов до нужного вам размера. Причем, центральная ее часть с куском ручки этой самой терки, которая обрабатывается до одного широкого ушка. На штанге же, наоборот, вилка из двух ушек крепления. Такое решение позволяет решить проблему деформирования катушки, при затягивании пластикового болта. Пазы для обмоток делают обычным выжигателем, затем установка ноля и заливка. От холодного конца ТХ, оставим 50 см. провода, который изначально не заливать, а свить из него маленькую катушечку (диаметром 3 см.) и разместить ее внутри RX, перемещая и деформируя ее в небольших пределах, можно добиться точного ноля, но делать это лучше на улице, размещая катушку у земли (как при поиске) при отключенном GEBе, если он есть, затем окончательно залить смолой. Тогда отстройка от земли, работает более- менее сносно (исключение сильно минерализованный грунт). Такая катушка получается легкой, прочной, мало подверженной термодеформации, а обработанная и окрашенная очень симпатичная. И еще одно наблюдение: если металлоискатель собран с отстройкой от грунта (GEB) и при центральном расположении движка резистора выставить ноль очень маленькой шайбой, диапазон регулировки GEBа +- 80-100 мВ. Если установить ноль большим предметом- монета 10-50 коп. диапазон регулировки увеличивается до +- 500-600 мВ. За напряжением в процессе настройки резонанса не гонитесь - у меня при 12в питания около 40В при последовательном резонансе. Чтоб появилась дискриминация конденсаторы в катушках включаем параллельно (последовательное включение нужно только на этапе подбора кондеров для резонанса) - на черные металлы будет протяжный звук, цветные - короткий.

Или ещё проще. Подключаем катушки по очереди к передающему ТХ выходу. Настраиваем в резонанс одну, а настроив её - другую. Пошагово: Подключили, параллельно катушке ткнули мультиметром на пределе переменные вольты, так-же параллельно катушке припаяли конденсатор 0.07-0.08 мкф, смотрим показания. Допустим 4 В - очень слабо, не в резонансе с частотой. Ткнули параллельно первому конденсатору второй небольшой ёмкости - 0.01 мкф (0.07+0.01=0.08). Смотрим - уже показал вольтметр 7 В. Отлично, увеличим ещё ёмкость, подключим на 0.02 мкФ - смотрим на вольтметр, а там 20 В. Великолепно, едем дальше - ещё докинем пару тысяч пик ёмкости. Ага. Уже начало падать, откатим назад. И так добиться максимальных показаний вольтметра на катушке металлоискателя. Затем аналогично с другой (приёмной) катушкой. Настроить на максимум и подключить обратно к приёмному гнезду.

Как сводить катушки металлоискателя в ноль

Для настройки нуля подключаем тестер на первую ногу LF353 и понемногу начинаем сжимать, растягивать катушку. После залива из эпоксидки - нолик точно убежит. Поэтому надо заливать не всю катушку, а оставить места для регулировки, и после высыхания доводить до нуля и заливать окончательно. Взять кусок шпагата и половину катушки обвязать одним витком к середине (к центральной части,месту соединения двух катушек) вставить в петлю шпагата кусочек палочки после чего ее крутить (натягивать шпагат) - катушка будет сжиматься, поймав нолик шпагат пропитать клеем, после почти полного высыхания опять подправить нолик повернув палочку еще чуть-чуть и залить шпагат окончательно. Или проще: Передающая закреплена в пластмассе неподвижно, а приёмную накладываем на первую на 1 см, типа как свадебные кольца. На первом выводе U1A будет писк 8 кГц - можно контролировать вольтметром переменного тока, но лучше просто высокоомными наушниками. Так вот приёмную катушку металоискателя надо то надвигать, то сдвигать с передающей до тех пор, пока на выходе ОУ писк не стихнет до минимума (или показания вольтметра не упадут до нескольких милливольт). Всё, катушка сведена, фиксируем.

Какой провод для поисковых катушек лучше

Провод для намотки катушек не имеет значения. От 0.3 до 0.8 пойдёт любой, всё равно придётся немного подбирать ёмкость для настройки контуров в резонанс и на частоту 8.192 кГц. Конечно и более тонкий провод вполне подходит, просто чем он толще, тем добротность и, как следствие чутьё - лучше. Но если намотать 1 мм - будет довольно тяжеловато таскать. На листе бумаги рисуем прямоугольник 15 на 23 см. От левого верхнего и нижнего угла откладываем по 2,5 см, и соединяем их линией. С правым верхним и нижними углами проделываем тоже самое, но откладываем по 3 см. По средине нижней части ставим точку и по точке слева и справа на расстоянии 1 см. Берем фанеру, накладываем этот эскиз и вбиваем гвоздики во все точки указанные. Берем провод ПЭВ 0,3 и мотаем 80 витков провода. Но честно говоря без разницы сколько витков. Всё равно частоту 8 кГц будем выставлять в резонанс конденсатором. Сколько намотали - столько и намотали. Я мотал 80 витков и конденсатор 0.1 мкф, если намотаете допустим 50 - ёмкость соответственно где-то 0.13 мкф поставить придётся. Далее, не снимая с шаблона обматываем катушку толстой ниткой - типа как обматывают жгуты проводов. После покрываем катушку лаком. Когда высохнет, снимаем катушку с шаблона. Затем идёт обмотка катушки изоляцией - фум лента или изолента. Далее - обмотка приёмной катушки фольгой, можно взять ленту из электролитических конденсаторов. TX катушку можно не экранировать. Не забудьте оставить РАЗРЫВ в экране 10 мм, по середине катушки. Дальше идёт обмотка фольги луженым проводом. Этот провод вместе с начальным контактом катушки у нас будет массой. И наконец обмотка катушки изолентой. Индуктивность катушек около 3,5мГ. Емкость получается около 0,1мкф. Что касается заливки катушки эпоксидкой, то я не заливал её вообще. Просто туго замотал изолентой. И ничего, два сезона отходил с этим металлоискателем без ухода настроек. Обратите внимание на влагоизоляцию схемы и поисковых катушек, ведь придётся по мокрой траве косить. Всё должно быть герметично - иначе попадёт влага и настройка поплывёт. Ухудшится чувствительность.

Какие детали и чем можно заменить

Транзисторы :
BC546 - 3шт или КТ315.
BC556 - 1шт или КТ361
Операционники :

LF353 - 1шт или меняйте на более распространенную TL072.
LM358N - 2шт
Цифровые микросхемы :
CD4011 - 1шт
CD4066 - 1шт
CD4013 - 1шт
Резисторы постоянные , мощностью 0,125-0,25 Вт:
5,6К - 1шт
430К - 1шт
22К - 3шт
10К - 1шт
390К - 1шт
1К - 2шт
1,5К - 1шт
100К - 8шт
220К - 1шт
130К - 2шт
56К - 1шт
8,2К - 1шт
Резисторы переменные :
100К - 1шт
330К - 1шт
Конденсаторы неполярные :
1нФ - 1шт
22нФ - 3шт (22000пФ = 22нФ = 0.022мкФ)
220нФ - 1шт
1мкФ - 2шт
47нФ - 1шт
10нФ - 1шт
Конденсаторы электролитические :
220мкФ на 16В - 2шт

Динамик миниатюрный.
Кварцевый резонатор на 32768 Гц.
Два сверхярких светодиода разного цвета.

Если вы не можете достать импортные микросхемы, вот отечественные аналоги: CD 4066 - К561КТ3, CD4013 - 561ТМ2, CD4011 - 561ЛА7, LM358N - КР1040УД1. У микросхемы LF353 - прямого аналога нет, но смело ставим LM358N или лучше TL072, TL062. Совсем не обязательно ставить операционный усилитель именно - LF353, я просто поднял усиление на U1A заменив резистор в цепи отрицательной обратной связи 390 кОм на 1 мОм - чувствительность значительно возросла на процентов 50, правда после этой замены ушёл ноль, пришлось на катушку в определённом месте приклеить скотчем кусочек алюминиевой пластинки. Советские три копейки чувствует по воздуху на расстоянии 25 сантиметров и это при питании 6 вольт, потребляемый ток без индикации - 10 мА. И не забудь про панельки - удобство и простота настройки значительно повысятся. Транзисторы КТ814, Кт815 - в передающую часть металлоискателя, КТ315 в УНЧ. Транзисторы - 816 и 817 желательно подобрать с одинаковым коэффициентом усиления. Заменимы на любые соответствующей структуры и мощности. В генераторе металлоискателя установлен специальный часовой кварц на частоту 32768 Гц. Это стандарт абсолютно для всех кварцевых резонаторов, которые стоят в любых электронных и электромеханических часах. В том числе и наручных и дешёвых китайских настенных/настольных. Архивы с печатной платой для варианта и для (вариант с ручной отстройкой от земли).

От чего зависит глубина поиска целей

Чем больше диаметр катушки металлоискателя, тем глубже чутьё. А вообще, глубина обнаружения цели данной катушкой, зависит прежде всего от размера самой цели. Но при увеличении диаметра катушки наблюдается уменьшение точности обнаружения объекта и даже иногда потеря мелких целей. Для объектов с монету, этот эффект наблюдается при увеличении размера катушки свыше 40 см. Итого: большая поисковая катушка, имеет большую глубину обнаружения и больший захват, но менее точно обнаруживает цель, чем маленькая. Большая катушка идеальна для поиска глубоких и больших целей, таких как клады и крупные объекты.

По форме катушки делятся на круглые и эллиптичные (прямоугольные). Эллиптичная катушка металлоискателя обладает лучшей избирательностью по сравнению с круглой, потому что ширина магнитного поля у нее меньше и в поле ее действия попадает меньше посторонних объектов. Но круглая имеет большую глубину обнаружения и лучшую чувствительность к цели. Особенно на слабо минерализованных грунтах. Круглая катушка наиболее часто используется при поиске с металлоискателем.

Катушки диаметром меньше 15 см называют маленькими, катушки диаметром 15-30 см называют средними и катушки свыше 30 см - большие. Большая катушка генерирует большее электромагнитное поле, поэтому она имеет большую глубину обнаружения, чем маленькая. Большие катушки генерируют большое электромагнитное поле и соответственно, имеют большую глубину обнаружения и покрытие при поиске. Такие катушки используются для просмотра больших площадей, но при их использовании, может возникнуть проблема на сильно замусоренных площадках потому, что в поле действия больших катушек может попасться сразу несколько целей и металлоискатель среагирует на более крупную цель.

Электромагнитное поле маленькой поисковой катушки тоже маленькое, поэтому с такой катушкой лучше всего искать на территориях сильно замусоренных всякими мелкими металлическими предметами. Маленькая катушка идеальна для обнаружения маленьких объектов, но имеет небольшую площадь покрытия и сравнительно небольшую глубину обнаружения.

Для универсального поиска хорошо подойдут средние катушки. Такой размер поисковой катушки сочетает в себе достаточную глубину поиска и чувствительность к целям с разными размерами. Я делал каждую катушку диаметром примерно 16 см и обе эти катушки укладывал в круглую подставку из-под старого монитора 15". В таком варианте глубина поиска этого металлоискателя будет такая: алюминиевая пластина 50x70 мм - 60 см, гайка М5-5 см, монетка - 30 см, ведро - около метра. Данные значения получены на воздухе, в земле будет на 30% меньше.

Питание металлоискателя

Отдельно схема металлоискателя тянет 15-20 мА, при подключенной катушке + 30-40 мА, итого вместе до 60 мА. Конечно в зависимости от типа применяемого динамика и светодиодов это значение может изменяться. Простейший случай - питание взял 3 (или даже две) последовательно подключенные литий ионные батарейки от мобил на 3,7В и при заряде разряженных аккумуляторов, когда подключаем любой блок питания на 12-13в, ток заряда начинается от 0,8А и падает до 50ма за час и тогда вообще не надо что-то добавлять, хотя ограничительный резистор конечно же не помешает. Как вообще самый простейший вариант - крона на 9В. Но учтите, что металлоискатель съест её за 2 часа. Но для настройки этот вариант питания самое оно. Крона при любых обстоятельствах не выдаст большой ток, который может спалить что-то в плате.

Самодельный металлоискатель

А теперь описание процесса сборки металлодетектора от одного из посетителей. Так как из приборов имею только мультиметр, скачал с инета виртуальную лабораторию Записных О.Л. Собрал адаптер, простенький генератор и прогнал в холостую осциллограф. Вроде показывает какую-то картинку. Далее занялся поиском радиодеталей. Так как печатки в основном выкладывают в формате «lay», скачал «Sprint-Layout50». Выяснил, что такое лазерно-утюжная технология изготовления печатных плат и как их травить. Вытравил плату. К этому времени все микросхемы были найдены. Что не нашел у себя в сарайчике, пришлось покупать. Приступил к пайке перемычек, резисторов, сокетов микросхем, и кварца из китайского будильника на плату. Периодически проверяя сопротивление на шинах питания чтобы не было соплей. Решил для начала собрать цифровую часть прибора, как наиболее легкую. То-есть генератор, делитель и коммутатор. Собрал. Поставил микросхему генератора (К561ЛА7) и делитель (К561ТМ2). Микросхемы б/ушные, выдрал из каких-то плат, обнаруженных в сарайчике. Подал питание 12В контролируя ток потребления по амерметру, 561ТМ2 стала теплой. Заменил 561ТМ2, подал питание - ноль эмоций. Меряю напряжение на ногах генератора - на 1 и 2 ногах 12В. Меняю 561ЛА7. Включаю - на выходе делителя, на 13 ноге есть генерация (наблюдаю на виртуальном осциллографе)! Картинка правда не ахти какая, но за неимением нормального осциллографа - пойдет. Но на 1, 2 и 12 ногах ничего нет. Значит генератор работает, нужно менять ТМ2. Установил третью микросхему делителя - красота на всех выходах есть генерация! Для себя сделал вывод, что выпаивать микросхемы нужно как можно аккуратнее! На этом первый шаг постройки сделан.

Теперь настраиваем плату металлоискателя. Не работал регулятор "SENS" - чувствительность, пришлось выкинуть конденсатор C3 после этого регулировка чувствительности заработала как надо. Не нравился звук возникающий в крайнем левом положении регулятора "THRESH" - порог, избавился от этого заменив резистор R9 цепочкой из последовательно соединённых резистор на 5,6 кОм + конденсатор на 47,0 мкФ (отрицательный вывод конденсатора со стороны транзистора). Пока нет микросхемы LF353 вместо неё поставил LM358, с ней советские три копейки чувствует по воздуху на расстоянии 15 сантиметров.

Поисковую катушку на передачу я включил как последовательный колебательный контур, а на приём как параллельный колебательный контур. Настраивал первой передающую катушку, подключил собранную конструкцию датчика к металлоискателю, осциллограф параллельно катушке и по максимальной амплитуде подобрал конденсаторы. После этого осциллограф подключил на приёмную катушку и по максимальной амплитуде подобрал конденсаторы на RX. Настройка контуров в резонанс занимает, при наличии осциллографа, несколько минут. Обмотки TX и RX у меня содержат по 100 витков провода диаметром 0,4. Начинаем сведение на столе, без корпуса. Просто чтоб было два обруча с проводами. А чтоб убедиться в работоспособности и возможности сведения вообще - разведём катушки друг от дрга на полметра. Тогда ноль будет точно. Затем наложив катушки внахлёст примерно 1см (как свадебные кольца) сдвигать - раздвигать. Точка нуля может быть довольно точная и поймать её сразу нелегко. Но она есть.

Когда, я поднял усиление в RX тракте МД, он начал работать неустойчиво на максимальной чувствительности, это проявлялось в том что после прохождения над целью и её обнаружении выдавался сигнал, но он продолжался и после того когда цели перед поисковой катушкой ни какой уже небыло, это проявлялось в виде прерывистых и колеблющихся звуковых сигналов. При помощи осциллографа была обнаружена и причина этого: при работе динамика и незначительной просадке питающего напряжения уходит "ноль" и схема МД переходит в автоколебательный режим, выйти из которого можно только загрубив порог срабатывания звукового сигнала. Это меня не устраивало поэтому я поставил по питанию КР142ЕН5А + сверх яркий белый светодиод чтобы поднять напряжение на выходе интегрального стабилизатора, стабилизатора на более высокое напряжение у меня небыло. Такой светодиод можно использовать даже для подсветки поисковой катушки. Динамик подключил до стабилизатора, МД после этого стал сразу очень послушный всё начало работать как надо. Думаю Volksturm действительно лучший самодельный металлоискатель!

Недавно была предложенна данная схема доработки, что позволит превратить Volksturm S в Volksturm SS + GEB. Теперь прибор станет обладать хорошим дискриминатором а также селективностью металлов и отстройкой от грунта, прибор паяется на отдельной плате и подключается вместо конденсаторов с5 и с4. Схема доработки и в архиве. Отдельная благодарность за информацию по сборке и настройке металлоискателя всем, кто принимал участие в обсуждении и модернизации схемы, особенно помогли в подготовке материала Электродыч, феска, xxx, slavake, ew2bw, redkii и другие коллеги радиолюбители.

Приборный поиск имеет просто огромную популярность. Ищут взрослые и дети, и любители и профессионалы. Ищут клады, монеты, потерянные вещи и закопанный металлолом. А главным орудием для поиска является металлоискатель .

Существует великое множество различных металлоискателей, на любой «вкус и цвет». Но для многих людей покупка готового фирменного металлоискателя просто финансово накладна. А кому то хочется собрать металлоискатель своими руками, а кто-то даже строит свой небольшой бизнес на их сборке.

Самодельные металлоискатели

В этом разделе нашего сайта о самодельных металлоискателях , буду собранны: лучшие схемы металлоискателей , их описания, программы и другие данные для изготовления металлоискателя своими руками . Здесь не будит схем металлоискателей из СССР и схем на двух транзисторах. Так как такие металлоискатели лишь подходят для наглядной демонстрации принципов металлодетекции, но совсем не пригодны для реального использования.

Все металлоискатели в этом разделе будут достаточно технологичными. Они будут иметь хорошие поисковые характеристики. И грамотно собранный самодельный металлоискатель немногим будит уступать заводским аналогам. В основном тут представлены различные схемы импульсных металлоискателей и схемы металлоискателей с дискриминацией металлов .

Но для изготовления этих металлоискателей, вам понадобится не только желание, но еще и определенные навыки и умения. Схемы приведенных металлоискателей, мы постарались разбить по уровню сложности.

Кроме основных данных необходимых для сборки металлоискателя, будет также информация о необходимом минимальном уровне знаний и оборудования для самостоятельно изготовления металлоискателя.

Для сборки металлоискателя своими руками вам обязательно понадобится:

В этом списке будут приведены необходимые инструменты, материалы и оборудование, для самостоятельной сборки всех без исключения металлоискателей. Для многих схем вам также понадобится различное дополнительное оборудования и материалы, тут только основное для всех схем.

  1. Паяльник, припой, олово и другие паяльные принадлежности.
  2. Отвертки, плоскогубцы, кусачки и прочий инструмент.
  3. Материалы и навыки по изготовлению печатной платы.
  4. Минимальный опыт и знания в электронике и электротехники также.
  5. А также прямые руки — будут очень полезны при сборке металлоискателя своими руками.

У нас вы можете найти схемы, для самостоятельной сборки следующих моделей металлоискателей:

Принцип работы IB
Дискриминация металлов есть
Максимальная глубина поиска
есть
Рабочая частота 4 — 17 кГц
Уровень сложности Средний

Принцип работы IB
Дискриминация металлов есть
Максимальная глубина поиска 1-1,5 метра (Зависит от размера катушки)
Программирумые микроконтроллеры есть
Рабочая частота 4 — 16 кГц
Уровень сложности Средний

Принцип работы IB
Дискриминация металлов есть
Максимальная глубина поиска 1 — 2 метра (Зависит от размера катушки)
Программирумые микроконтроллеры есть
Рабочая частота 4,5 — 19,5 кГц
Уровень сложности Высокий