Излучение по физике. Излучение. Источник излучения и его виды

краткое содержание других презентаций

«Электролиз растворов и расплавов» - Майкл Фарадей (1791 – 1867). Не допускать разбрызгивания электролита. Схемы процессов. Задачи урока: Электролиты – сложные вещества, расплавы и растворы которых проводят электрический ток. ГБОУ СОШ № 2046 г. Москва. Сu2+ - окисли-тель. Соли, щелочи, кислоты. Правила техники безопасности при работе на ПК. Правила техники безопасности. Процесс присоединения электронов ионами называется восстановлением. Катод. Тема у рока: «Электролиз расплавов и растворов бескислородных солей.

«Физика магнитного поля» - Поместив внутрь соленоида стальной стержень, мы получим простейший электромагнит. Приблизительно сосчитаем количество примагнитившихся гвоздиков. Рассмотрим магнитное поле проводника, свернутого в виде спирали. Метод силовых линий. Цели и задачи проекта: Около прямого провода расположена магнитная стрелка. Источник магнитного поля.

«Атомная энергия» - На подобных съездах решаются вопросы, связанные с монтажными работами на АЭС. Радиоактивные отходы образуются почти на всех стадиях ядерного цикла. На Сев. Конечно, от ядерной энергетики можно вообще отказаться. АЭС, ТЭЦ, ГЭС-современная цивилизация. Запорожская АЭС. Энергетика: «против».

«Физика света» - Подбор очков. Построение изображения в рассеивающей линзе. Телескоп зеркальный (рефлектор). Собирающая линза. Геометрическая оптика. Прямолинейностью распространения света объясняется образование тени. Солнечное затмение объясняется прямолинейным распространением света. Собирающие (а) и рассеивающие (б) линзы. Глаз человека. Распространение света в волоконном световоде.

«Электрические явления 8 класс» - Отталкиваются. Соприкосновение. Вещества. Процесс сообщения телу Электрического заряда g. Трение. Электроскоп электрометр. Приборы. Электрический заряд. 8 класс.Электрические явления МОУ Первомайская СОШ Хайруллина Галина Александровна. + ДВА рода зарядов -. Электрические явления начало 17 века. Непроводники (Диэлектрики) -эбонит -янтарь Фарфор резина. Из диэлектриков. ЭЛЕКТРОН(греч.)-ЯНТАРЬ. Заряды не исчезают и не появляются,а только перераспределяются между двумя телами. Изоляторы. Притягивают к себе соломинки,пушинки,мех. Трjение. Электризуются оба тела.

«Деятельность Ломоносова» - Обучение велось круглый год. : Литературная деятельность. Развитие деятельности Ломоносова. Ломоносову 300 лет. Новый период в жизни. Путешествие в Москву. Значение химии в жизни Ломоносова.

Навигация по статье:


Радиация и виды радиоактивных излучений, состав радиоактивного (ионизирующего) излучения и его основные характеристики. Действие радиации на вещество.

Что такое радиация

Для начала дадим определение, что такое радиация:

В процессе распада вещества или его синтеза происходит выброс элементов атома (протонов, нейтронов, электронов, фотонов), иначе можно сказать происходит излучение этих элементов. Подобное излучение называют - ионизирующее излучение или что чаще встречается радиоактивное излучение , или еще проще радиация . К ионизирующим излучениям относится так же рентгеновское и гамма излучение.

Радиация - это процесс излучения веществом заряженных элементарных частиц, в виде электронов, протонов, нейтронов, атомов гелия или фотонов и мюонов. От того, какой элемент излучается, зависит вид радиации.

Ионизация - это процесс образования положительно или отрицательно заряженных ионов или свободных электронов из нейтрально заряженных атомов или молекул.

Радиоактивное (ионизирующее) излучение можно разделить на несколько типов, в зависимости от вида элементов из которого оно состоит. Разные виды излучения вызваны различными микрочастицами и поэтому обладают разным энергетическим воздействие на вещество, разной способностью проникать сквозь него и как следствие различным биологическим действием радиации.



Альфа, бета и нейтронное излучение - это излучения, состоящие из различных частиц атомов.

Гамма и рентгеновское излучение - это излучение энергии.


Альфа излучение

  • излучаются: два протона и два нейтрона
  • проникающая способность: низкая
  • облучение от источника: до 10 см
  • скорость излучения: 20 000 км/с
  • ионизация: 30 000 пар ионов на 1 см пробега
  • высокое

Альфа (α) излучение возникает при распаде нестабильных изотопов элементов.

Альфа излучение - это излучение тяжелых, положительно заряженных альфа частиц, которыми являются ядра атомов гелия (два нейтрона и два протона). Альфа частицы излучаются при распаде более сложных ядер, например, при распаде атомов урана, радия, тория.

Альфа частицы обладают большой массой и излучаются с относительно невысокой скоростью в среднем 20 тыс. км/с, что примерно в 15 раз меньше скорости света. Поскольку альфа частицы очень тяжелые, то при контакте с веществом, частицы сталкиваются с молекулами этого вещества, начинают с ними взаимодействовать, теряя свою энергию и поэтому проникающая способность данных частиц не велика и их способен задержать даже простой лист бумаги.

Однако альфа частицы несут в себе большую энергию и при взаимодействии с веществом вызывают его значительную ионизацию. А в клетках живого организма, помимо ионизации, альфа излучение разрушает ткани, приводя к различным повреждениям живых клеток.

Из всех видов радиационного излучения, альфа излучение обладает наименьшей проникающей способностью, но последствия облучения живых тканей данным видом радиации наиболее тяжелые и значительные по сравнению с другими видами излучения.

Облучение радиацией в виде альфа излучения может произойти при попадании радиоактивных элементов внутрь организма, например, с воздухом, водой или пищей, а также через порезы или ранения. Попадая в организм, данные радиоактивные элементы разносятся током крови по организму, накапливаются в тканях и органах, оказывая на них мощное энергетическое воздействие. Поскольку некоторые виды радиоактивных изотопов, излучающих альфа радиацию, имеют продолжительный срок жизни, то попадая внутрь организма, они способны вызвать в клетках серьезные изменения и привести к перерождению тканей и мутациям.

Радиоактивные изотопы фактически не выводятся с организма самостоятельно, поэтому попадая внутрь организма, они будут облучать ткани изнутри на протяжении многих лет, пока не приведут к серьезным изменениям. Организм человека не способен нейтрализовать, переработать, усвоить или утилизировать, большинство радиоактивных изотопов, попавших внутрь организма.

Нейтронное излучение

  • излучаются: нейтроны
  • проникающая способность: высокая
  • облучение от источника: километры
  • скорость излучения: 40 000 км/с
  • ионизация: от 3000 до 5000 пар ионов на 1 см пробега
  • биологическое действие радиации: высокое


Нейтронное излучение - это техногенное излучение, возникающие в различных ядерных реакторах и при атомных взрывах. Также нейтронная радиация излучается звездами, в которых идут активные термоядерные реакции.

Не обладая зарядом, нейтронное излучение сталкиваясь с веществом, слабо взаимодействует с элементами атомов на атомном уровне, поэтому обладает высокой проникающей способностью. Остановить нейтронное излучение можно с помощью материалов с высоким содержанием водорода, например, емкостью с водой. Так же нейтронное излучение плохо проникает через полиэтилен.

Нейтронное излучение при прохождении через биологические ткани, причиняет клеткам серьезный ущерб, так как обладает значительной массой и более высокой скоростью чем альфа излучение.

Бета излучение

  • излучаются: электроны или позитроны
  • проникающая способность: средняя
  • облучение от источника: до 20 м
  • скорость излучения: 300 000 км/с
  • ионизация: от 40 до 150 пар ионов на 1 см пробега
  • биологическое действие радиации: среднее

Бета (β) излучение возникает при превращении одного элемента в другой, при этом процессы происходят в самом ядре атома вещества с изменением свойств протонов и нейтронов.

При бета излучении, происходит превращение нейтрона в протон или протона в нейтрон, при этом превращении происходит излучение электрона или позитрона (античастица электрона), в зависимости от вида превращения. Скорость излучаемых элементов приближается к скорости света и примерно равна 300 000 км/с. Излучаемые при этом элементы называются бета частицы.

Имея изначально высокую скорость излучения и малые размеры излучаемых элементов, бета излучение обладает более высокой проникающей способностью чем альфа излучение, но обладает в сотни раз меньшей способность ионизировать вещество по сравнению с альфа излучением.

Бета радиация с легкостью проникает сквозь одежду и частично сквозь живые ткани, но при прохождении через более плотные структуры вещества, например, через металл, начинает с ним более интенсивно взаимодействовать и теряет большую часть своей энергии передавая ее элементам вещества. Металлический лист в несколько миллиметров может полностью остановить бета излучение.

Если альфа радиация представляет опасность только при непосредственном контакте с радиоактивным изотопом, то бета излучение в зависимости от его интенсивности, уже может нанести существенный вред живому организму на расстоянии несколько десятков метров от источника радиации.

Если радиоактивный изотоп, излучающий бета излучение попадает внутрь живого организма, он накапливается в тканях и органах, оказывая на них энергетическое воздействие, приводя к изменениям в структуре тканей и со временем вызывая существенные повреждения.

Некоторые радиоактивные изотопы с бета излучением имеют длительный период распада, то есть попадая в организм, они будут облучать его годами, пока не приведут к перерождению тканей и как следствие к раку.

Гамма излучение

  • излучаются: энергия в виде фотонов
  • проникающая способность: высокая
  • облучение от источника: до сотен метров
  • скорость излучения: 300 000 км/с
  • ионизация:
  • биологическое действие радиации: низкое

Гамма (γ) излучение - это энергетическое электромагнитное излучение в виде фотонов.

Гамма радиация сопровождает процесс распада атомов вещества и проявляется в виде излучаемой электромагнитной энергии в виде фотонов, высвобождающихся при изменении энергетического состояния ядра атома. Гамма лучи излучаются ядром со скоростью света.

Когда происходит радиоактивный распад атома, то из одних веществ образовываются другие. Атом вновь образованных веществ находятся в энергетически нестабильном (возбужденном) состоянии. Воздействую друг на друга, нейтроны и протоны в ядре приходят к состоянию, когда силы взаимодействия уравновешиваются, а излишки энергии выбрасываются атомом в виде гамма излучения

Гамма излучение обладает высокой проникающей способностью и с легкостью проникает сквозь одежду, живые ткани, немного сложнее через плотные структуры вещества типа металла. Чтобы остановить гамма излучение потребуется значительная толщина стали или бетона. Но при этом гамма излучение в сто раз слабее оказывает действие на вещество чем бета излучение и десятки тысяч раз слабее чем альфа излучение.

Основная опасность гамма излучения - это его способность преодолевать значительные расстояния и оказывать воздействие на живые организмы за несколько сотен метров от источника гамма излучения.

Рентгеновское излучение

  • излучаются: энергия в виде фотонов
  • проникающая способность:высокая
  • облучение от источника: до сотен метров
  • скорость излучения: 300 000 км/с
  • ионизация: от 3 до 5 пар ионов на 1 см пробега
  • биологическое действие радиации: низкое

Рентгеновское излучение - это энергетическое электромагнитное излучение в виде фотонов, возникающие при переходе электрона внутри атома с одной орбиты на другую.

Рентгеновское излучение сходно по действию с гамма излучением, но обладает меньшей проникающей способностью, потому что имеет большую длину волны.


Рассмотрев различные виды радиоактивного излучения, видно, что понятие радиация включает в себя совершенно различные виды излучения, которые оказывают разное воздействие на вещество и живые ткани, от прямой бомбардировки элементарными частицами (альфа, бета и нейтронное излучение) до энергетического воздействия в виде гамма и рентгеновского излечения.

Каждое из рассмотренных излучений опасно!



Сравнительная таблица с характеристиками различных видов радиации

характеристика Вид радиации
Альфа излучение Нейтронное излучение Бета излучение Гамма излучение Рентгеновское излучение
излучаются два протона и два нейтрона нейтроны электроны или позитроны энергия в виде фотонов энергия в виде фотонов
проникающая способность низкая высокая средняя высокая высокая
облучение от источника до 10 см километры до 20 м сотни метров сотни метров
скорость излучения 20 000 км/с 40 000 км/с 300 000 км/с 300 000 км/с 300 000 км/с
ионизация, пар на 1 см пробега 30 000 от 3000 до 5000 от 40 до 150 от 3 до 5 от 3 до 5
биологическое действие радиации высокое высокое среднее низкое низкое

Как видно из таблицы, в зависимости от вида радиации, излучение при одной и той же интенсивности, например в 0.1 Рентген, будет оказать разное разрушающее действие на клетки живого организма. Для учета этого различия, был введен коэффициент k, отражающий степень воздействия радиоактивного излучения на живые объекты.


Коэффициент k
Вид излучения и диапазон энергий Весовой множитель
Фотоны всех энергий (гамма излучение) 1
Электроны и мюоны всех энергий (бета излучение) 1
Нейтроны с энергией < 10 КэВ (нейтронное излучение) 5
Нейтроны от 10 до 100 КэВ (нейтронное излучение) 10
Нейтроны от 100 КэВ до 2 МэВ (нейтронное излучение) 20
Нейтроны от 2 МэВ до 20 МэВ (нейтронное излучение) 10
Нейтроны > 20 МэВ (нейтронное излучение) 5
Протоны с энергий > 2 МэВ (кроме протонов отдачи) 5
Альфа-частицы , осколки деления и другие тяжелые ядра (альфа излучение) 20

Чем выше "коэффициент k" тем опаснее действие определенного вида радиции для тканей живого организма.




Видео:


Моноэнергетическое ионизирующее излучение - ионизирующее излучение, состоящее из фотонов одинаковой энергии или частиц одного вида с одинаковой кинетической энергией.

Смешанное ионизирующее излучение - ионизирующее излучение, состоящее из частиц различного вида или из частиц и фотонов.

Направленное ионизирующее излучение ионизирующее излучение с выделенным направлением распространения.

Естественный фон излучения - ионизирующее излучение, создаваемое космическим излучением и излучением естественно распределенных природных радиоактивных веществ (на поверхности Земли, в приземной атмосфере, в продуктах питания, воде, в организме человека и др.).

Фон - ионизирующее излучение, состоящее из естественного фона и ионизирующих излучений посторонних источников.

Космическое излучение - ионизирующее излучение, которое состоит из первичного излучения, поступающего из космического пространства, и вторичного излучения, возникающего в результате взаимодействия первичного излучения с атмосферой.

Узкий пучок излучения - такая геометрия излучения, при которой детектор регистрирует только нерассеянное излучение источника.

Широкий пучок излучения - такая геометрия излучения, при которой детектор регистрирует нерассеянное и рассеянное излучения источника.

Поле ионизирующего излучения - пространственно-временное распределение ионизирующего излучения в рассматриваемой среде.

Поток ионизирующих частиц (фотонов) - отношение числа ионизирующих частиц (фотонов) dN, проходящих через данную поверхность за интервал времени dt, к этому интервалу: F = dN/dt.

Поток энергии частиц - отношение энергии падающих частиц к интервалу времени Ψ=dЕ/dt.

Плотность потока ионизирующих частиц (фотонов) - отношение потока ионизирующих частиц (фотонов) dF

проникающих в объем элементарной сферы, к площади центрального поперечного сечения dS этой сферы: φ = dF/dS = d 2 N/dtdS. (Плотность потока энергии частиц определяется аналогично).

Флюенс (перенос) ионизирующих частиц (фотонов) - отношение числа ионизирующих частиц (фотонов) dN , проникающих в объем элементарной сферы, к площади центрального поперечного сечения dS этой сферы: Ф = dN/dS.

Энергетический спектр ионизирующих частиц - распределение ионизирующих частиц по их энергии. Эффективная энергия фотонного излучения - энергия фотонов такого моноэнергетического фотонного

излучения, относительное ослабление которого в поглотителе определенного состава и определенной толщины то же самое, что и рассматриваемого немоноэнергетического фотонного излучения.

Граничная энергия спектра β -излучения - наибольшая энергия β -частиц в непрерывном энергетическом спектре β -излучения данного радионуклида.

Альбедо излучения - отношение числа частиц (фотонов), отражающихся от границы раздела двух сред, к числу частиц (фотонов), падающих на поверхность раздела.

Запаздывающее излучение : частицы, излучаемые продуктами распада, в отличии от частиц (нейтронов и гамма - лучей), возникающих непосредственно в момент деления.

Ионизация в газах: отрыв от атома или молекулы газа одного или нескольких электронов. В результате ионизации в газе возникают свободные носители заряда (электроны и ионы) и он приобретает способность проводить электрический ток.

Термин «излучение» охватывает диапазон электромагнитных волн, включая видимый спектр, инфракрасную и ультрафиолетовую области, а также радиоволны, электрический ток и ионизирующее излучение. Вся несхожесть этих явлений обусловлена лишь частотой (длиной волны) излучения. Ионизирующее излучение может представлять опасность для здоровья человека. Ионизирующее излучение (радиация ) - вид излучения, который изменяет физическое состояние атомов или атомных ядер, превращая их в электрически заряженные ионы или продукты ядерных реакций. При определенных обстоятельствах присутствие таких ионов или продуктов ядерных реакций в тканях организма может изменять течение процессов в клетках и молекулах, а при накоплении этих событий может нарушить ход биологических реакций в организме, т.е. представлять опасность для здоровья человек.

2. ВИДЫ ИЗЛУЧЕНИЙ

Различают корпускулярное излучение, состоящее из частиц с массой отличной от нуля, и электромагнитное (фотонное) излучение.

2.1. Корпускулярное излучение

К корпускулярному ионизирующему излучению относят альфа-излучение, электронное, протонное, нейтронное и мезонное излучения. Корпускулярное излучение, состоящее из потока заряженных частиц (α-, β-частиц, протонов, электронов), кинетическая энергия которых достаточна для ионизации атомов при

столкновении, относится к классу непосредственно ионизирующего излучения. Нейтроны и другие элементарные частицы непосредственно не производят ионизацию, но в процессе взаимодействия со средой высвобождают заряженные частицы (электроны, протоны), способные ионизировать атомы и молекулы среды, через которую проходят.

Соответственно, корпускулярное излучение, состоящее из потока незаряженных частиц, называют косвенно ионизирующим излучением.

Рис.1 . Схема распада 212 Bi.

2.1.1 Альфа-излучение

Альфа частицы (α - частицы) - ядра атома гелия, испускаемые при α - распаде некоторыми радиоактивными атомами. α - частица состоит из двух протонов и двух нейтронов.

Альфа излучение - поток ядер атомов гелия (положительно заряженных и

относительно тяжелых частиц).

Естественное альфа-излучение как результат радиоактивного распада ядра, характерно для неустойчивых ядер тяжелых элементов, начиная с атомного номера более 83, т.е. для естественных радионуклидов рядов урана, и тория, а также, для полученных искусственным путем трансурановых элементов.

Типичная схема α -распада природного радионуклида представлена на Рис.1 , а энергетический спектр α -частиц, образующихся при распаде радионуклида – на

Рис.2.

Рис.2 Энергетический спектр α -частиц

Возможность α- распада связана с тем, что масса (а, значит, и суммарная энергия ионов) α- радиоактивного ядра больше суммы масс α- частицы и образующегося после α- распада дочернего ядра. Избыток энергии исходного (материнского) ядра освобождается в форме кинетической энергии α- частицы и отдачи дочернего ядра. α- частицы представляют собой положительно заряженные ядра гелия - 2 Не4 и вылетают из ядра со скоростью 15-20 тыс. км/сек. На своём пути они производят сильную ионизацию среды,

вырывая электроны из орбит атомов.

Пробег α- частиц в воздухе порядка 5-8 см, в воде - 30-50 микрон, в металлах - 10-20 микрон. При ионизации α- лучами наблюдаются химические изменения вещества, и нарушается кристаллическая структура твердых тел. Так как между α- частицей и ядром существует электростатическое отталкивание, вероятность ядерных реакций под действием α- частиц природных радионуклидов (максимальная энергия 8,78 МэВ у 214 Ро) очень мала, и наблюдается лишь на легких ядрах (Li, Ве, В, С, N, Na, Al) с образованием радиоактивных изотопов и свободных нейтронов.

2.1.2 Протонное излучение

Протонное излучение – излучение, образующееся в процессе самопроизвольного распада нейтроннодефицитных атомных ядер или как выходной пучок ионного ускорителя (например, синхрофазоторона).

2.1.3 Нейтронное излучение

Нейтронное излучение - поток нейтронов, которые преобразуют свою энергию в упругих и неупругих взаимодействиях с ядрами атомов. При неупругих взаимодействиях возникает вторичное излучение, которое может состоять как из заряженных частиц, так и из гамма-квантов (гамма-излучения). При упругих взаимодействиях возможна обычная ионизация вещества.

Источниками нейтронного излучения являются: спонтанно делящиеся радионуклиды; специально изготовленные радионуклидные источники нейтронов; ускорители электронов, протонов, ионов; ядерные реакторы; космическое излучение.

С точки зрения биологического Нейтроны образуются в ядерных реакциях (в ядерных реакторах и в других промышленных и лабораторных установках, а также при ядерных взрывах).

Нейтроны не обладают электрическим зарядом. Условно нейтроны в зависимости от кинетической энергии разделяются на быстрые (до 10 МэВ), сверхбыстрые, промежуточные, медленные и тепловые. Нейтронное излучение обладает большой проникающей способностью. Медленные и тепловые нейтроны вступают в ядерные реакции, в результате могут образовываться стабильные или радиоактивные изотопы.

Свободный нейтрон - это нестабильная, электрически нейтральная частица со следующими

свойствами:

Заряд (e - заряд электрона)

qn = (-0,4 ± 1,1)·10-21 е

939,56533 ± 0,00004 МэВ ,

в атомных единицах

1,00866491578 ± 0,00000000055 а.е.м.

Разность масс нейтрона и протона

mn - mp = 1,2933318 ± 0,0000005 МэВ ,

в атомных единицах

0,0013884489 ± 0,0000000006 а.е.м.

Время жизни

tn = 885,4 ± 0,9stat ± 0,4syst с

Магнитный момент

mn = -1,9130427 ± 0,0000005 mN

Электрический дипольный момент

dn < 0,63·10-25 e ·см (CL=90%)

Электрическая поляризуемость

an = (

)·10-3 Фм 3

Эти свойства нейтрона позволяют использовать его, с одной стороны, как объект, который изучается и, с другой стороны, как инструмент, при помощи которого ведутся исследования. В первом случае исследуются уникальные свойства нейтрона, что является актуальным и дает возможность наиболее надежно и точно определить фундаментальные параметры электрослабого взаимодействия и, тем самым либо подтвердить, либо опровергнуть Стандартную модель. Наличие магнитного момента у нейтрона уже свидетельствует о его сложной структуре, т.е. его "неэлементарности". Во втором случае взаимодействие неполяризованных и поляризованных нейтронов разных энергий с ядрами позволяет их использовать в физике ядра и элементарных частиц. Изучение эффектов нарушения пространственной четности и инвариантности относительно обращения времени в различных процессах - от нейтронной оптики до деления ядер нейтронами - это далеко не полный перечень наиболее актуальных сейчас направлений исследований.

Тот факт, что реакторные нейтроны тепловых энергий имеют длины волн, сравнимые с межатомными расстояниями в веществе, делает их незаменимым инструментом для исследования конденсированных сред. Взаимодействие нейтронов с атомами является сравнительно слабым, что позволяет нейтронам достаточно глубоко проникать в вещество - в этом их существенное преимущество по сравнению с рентгеновскими и γ - лучами, а также пучками заряженных частиц. из-за наличия массы нейтроны при том же импульсе (следовательно, при той же длине волны) обладают значительно меньшей энергией, чем рентгеновские и γ - лучи, и эта энергия оказывается сравнимой с энергией тепловых колебаний атомов и молекул в веществе, что дает возможность изучать не только усредненную статическую атомную структуру вещества, но и динамические процессы, в нем происходящие. Наличие магнитного момента у нейтронов позволяет использовать их для изучения магнитной структуры и магнитных возбуждений вещества, что очень важно для понимания свойств и природы магнетизма материалов.

Рассеяние нейтронов атомами обусловлено, в основном, ядерными силами, следовательно сечения их когерентного рассеяния никак не связаны с атомным номером (в отличие от рентгеновских и γ -лучей). Поэтому облучение материалов нейтронами позволяет различать положения атомов легких (водород, кислород и др.) элементов, идентификация которых почти невозможна с использованием рентгеновских и γ - лучей. По этой причине нейтроны успешно применяются при изучении биологических объектов, в материаловедении, в медицине и др. областях. Кроме того, различие в сечениях рассеяния нейтронов у разных изотопов позволяет не только отличать в материале элементы с близкими атомными номерами, но и исследовать их изотопный состав. Наличие изотопов с отрицательной амплитудой когерентного рассеяния дает уникальную возможность контрастирования исследуемых сред, что также очень часто используют в биологии и медицине.

Когерентное рассеяние - рассеяние излучения с сохранением частоты и с фазой, отличающейся на π от фазы первичного излучения. Рассеянная волна может интерферировать с падающей волной или другими когерентно рассеянными волнами.

Излучение - это физический процесс, результатом которого является передача энергии с помощью электромагнитных волн. Обратный излучению процесс называется поглощением. Рассмотрим этот вопрос подробнее, а также приведем примеры излучения в быту и природе.

Физика возникновения излучения

Любое тело состоит из атомов, которые, в свою очередь, образованы ядрами, заряженными положительно, и электронами, которые образуют электронные оболочки вокруг ядер и заряжены отрицательно. Атомы устроены таким образом, что они могут находиться в разных энергетических состояниях, то есть обладать как большей, так и меньшей энергией. Когда атом имеет наименьшую энергию, то говорят о его основном состоянии, любое другое энергетическое состояние атома называется возбужденным.

Существование различных энергетических состояний атома связано с тем, что его электроны могут располагаться на тех или иных энергетических уровнях. Когда электрон переходит с более высокого уровня на более низкий, то атом теряет энергию, которую он излучает в окружающее пространство в виде фотона - частицы-носителя электромагнитных волн. Наоборот, переход электрона с более низкого на более высокий уровень сопровождается поглощением фотона.

Перевести электрон атома на более высокий энергетический уровень можно несколькими способами, которые предполагают передачу энергии. Это может быть как воздействие на рассматриваемый атом внешнего электромагнитного излучения, так и передача ему энергии механическим или электрическим способами. Кроме того, атомы могут получать, а затем выделять энергию в результате химических реакций.

Электромагнитный спектр

Прежде чем переходить к примерам излучения в физике, необходимо отметить, что каждый атом испускает определенные порции энергии. Это происходит потому, что состояния, в которых может находиться электрон в атоме, являются не произвольными, а строго определенными. Соответственно переход между этими состояниями сопровождается излучением определенного количества энергии.

Из атомной физики известно, что фотоны, порождаемые в результате электронных переходов в атоме, обладают энергией, которая прямо пропорциональна их частоте колебаний и обратно пропорциональна длине волны (фотон - это электромагнитная волна, которая характеризуется скоростью распространения, длиной и частотой). Поскольку атом вещества может испускать только определенный набор энергий, значит, длины волн испущенных фотонов тоже являются конкретными. Набор всех этих длин называется электромагнитным спектром.

Если длина волны фотона лежит между 390 нм и 750 нм, то говорят о видимом свете, поскольку его способен воспринимать человек своими глазами, если длина волны меньше 390 нм, то такие электромагнитные волны обладают большой энергией и называются ультрафиолетовым, рентгеновским или гамма-излучением. Для длин больше 750 нм характерна небольшая энергия фотонов, они носят название инфракрасного, микро- или радиоизлучения.

Тепловое излучение тел

Всякое тело, которое имеет некоторую отличную от абсолютного нуля температуру, излучает энергию, в этом случае говорят о тепловом или температурном излучении. При этом температура определяет как электромагнитный спектр теплового излучения, так и количество испускаемой телом энергии. Чем больше температура, тем большую энергию излучает тело в окружающее пространство, и тем сильнее его электромагнитный спектр смещается в высокочастотную область. Процессы теплового излучения описываются законами Стефана-Больцмана, Планка и Вина.

Примеры излучения в быту

Как выше было сказано, энергию в виде электромагнитных волн излучает абсолютно любое тело, однако видеть невооруженным глазом этот процесс можно не всегда, поскольку температуры окружающих нас тел, как правило, слишком маленькие, поэтому их спектр лежит в низкочастотной невидимой для человека области.

Ярким примером излучения в видимом диапазоне является электрическая лампа накаливания. Проходя по спирали, электрический ток разогревает вольфрамовую нить до 3000 К. Такая высокая температура приводит к тому, что нить начинает испускать электромагнитные волны, максимум которых приходится на длинноволновую часть видимого спектра.

Еще один пример излучения в быту - микроволновая печь, которая испускает микроволны, невидимые для человеческого глаза. Эти волны поглощаются объектами, содержащими воду, тем самым увеличивая их кинетическую энергию и, как следствие, температуру.

Наконец, примером излучения в быту в инфракрасном диапазоне является радиатор батареи отопления. Его излучения мы не видим, но чувствуем это тепло.

Природные излучающие объекты

Пожалуй, самым ярким примером излучения в природе является наша звезда - Солнце. Температура на поверхности Солнца около поэтому его максимум излучения приходится на длину волны 475 нм, то есть лежит внутри видимого спектра.

Солнце разогревает находящиеся вокруг него планеты и их спутники, которые тоже начинают светиться. Здесь следует отличать отраженный свет и тепловое излучение. Так, нашу Землю можно видеть из космоса в виде голубого шара именно благодаря отраженному солнечному свету. Если же говорить о тепловом излучении планеты, то оно также имеет место, но лежит в области микроволнового спектра (около 10 мкм).

Помимо отраженного света, интересно привести еще один пример излучения в природе, который связан со сверчками. Испускаемый ими видимый свет никак не связан с тепловым излучением и является результатом химической реакции между кислородом воздуха и люциферином (вещество, содержащееся в клетках насекомых). Это явление носит название биолюминесценции.

Сегодня поговорим о том, что такое излучение в физике. Расскажем о природе электронных переходов и приведем электромагнитную шкалу.

Божество и атом

Строение вещества стало предметом интереса ученых более двух тысяч лет назад. Древнегреческие философы задавались вопросами, чем воздух отличается от огня, а земля от воды, почему мрамор белый, а уголь черный. Они создавали сложные системы взаимозависимых компонентов, опровергали или поддерживали друг друга. А самые непонятные явления, например, удар молнии или восход солнца приписывали действию богов.

Однажды, долгие годы наблюдая за ступенями храма, один ученый заметил: каждая нога, встающая на камень, уносит крошечную частичку вещества. Со временем мрамор менял форму, прогибался посередине. Имя этого ученого - Левкипп, и он назвал мельчайшие частицы атомами, неделимыми. С этого начался путь к изучению того, что такое излучение в физике.

Пасха и свет

Затем настали темные времена, науку забросили. Всех, кто пытался изучать силы природы, окрестили ведьмами и колдунами. Но, как ни странно, именно религия дала толчок к дальнейшему развитию науки. Исследование о том, что такое излучение в физике, началось с астрономии.

Время празднования Пасхи вычислялось в те времена каждый раз по-разному. Сложная система взаимоотношений между днем весеннего равноденствия, 26-дневным лунным циклом и 7-дневной неделей не позволяла составлять таблицы дат для празднования Пасхи более чем на пару лет. Но церкви надо было все планировать заранее. Поэтому Папа Римский Лев X заказал составление более точных таблиц. Это потребовало тщательно наблюдения за движением Луны, звезд и Солнца. И в конце концов Николай Коперник понял: Земля не плоская и не центр вселенной. Планета - шар, который вращается вокруг Солнца. А Луна - сфера на орбите Земли. Конечно, можно спросить: «Какое отношение все это имеет к тому, что такое излучение в физике?» Сейчас раскроем.

Овал и луч

Позже Кеплер дополнил систему Коперника, установив, что планеты движутся по овальным орбитам, и движение это неравномерное. Но именно тот первый шаг привил человечеству интерес к астрономии. А там недалеко было и до вопросов: «Что такое звезда?», «Почему люди видят ее лучи?» и «Чем одно светило отличается от другого?». Но сначала придется перейти от огромных объектов к самым маленьким. И затем подойдем к излучению, понятию в физике.

Атом и изюм

В конце девятнадцатого века накопилось достаточно знаний о малейших химических единицах вещества - атомах. Было известно, что они электронейтральны, но содержат как положительно, так и отрицательно заряженные элементы.

Предположений выдвигалось множество: и что положительные заряды распределены в отрицательном поле, как изюм в булке, и что атом - это капля из разнородно заряженных жидких частей. Но все прояснил опыт Резерфорда. Он доказал, что в центре атома находится положительное тяжелое ядро, а вокруг него располагаются легкие отрицательные электроны. И конфигурация оболочек для каждого атома своя. Тут-то и кроются особенности излучения в физике электронных переходов.

Бор и орбита

Когда ученые выяснили, что легкие отрицательные части атома - это электроны, встал другой вопрос - почему они не падают на ядро. Ведь, согласно теории Максвелла, любой движущийся заряд излучает, следовательно, теряет энергию. Но атомы существовали столько же, сколько вселенная, и не собирались аннигилировать. На выручку пришел Бор. Он постулировал, что электроны находятся на некоторых стационарных орбитах вокруг атомного ядра, и находиться могут только на них. Переход электрона между орбитами осуществляется рывком с поглощением или испусканием энергии. Этой энергией может быть, например, квант света. По сути, мы сейчас изложили определение излучения в физике элементарных частиц.

Водород и фотография

Изначально технология фотографии была придумана как коммерческий проект. Люди хотели остаться в веках, но заказать портрет у художника было не каждому по карману. А фотографии были дешевыми и не требовали таких больших вложений. Потом искусство стекла и нитрата серебра поставило себе на службу военное дело. А затем и наука стала пользоваться преимуществами светочувствительных материалов.

В первую очередь фотографировать стали спектры. Уже давно было известно, что горячий водород испускает конкретные линии. Расстояние между ними подчинялось определенному закону. Но вот спектр гелия был более сложным: он содержал тот же набор линий, что и водород, и еще один. Вторая серия уже не подчинялась закону, выведенному для первой серии. Тут на помощь пришла теория Бора.

Выяснилось, что электрон в атоме водорода один, и он может переходить из всех высших возбужденных орбит на одну нижнюю. Это и была первая серия линий. Более тяжелые атомы устроены сложнее.

Линза, решетка, спектр

Таким образом было положено начало применению излучения в физике. Спектральный анализ - один из самых мощных и надежных способов определения состава, количества и структуры вещества.

  1. Электронный эмиссионный спектр расскажет, что содержится в объекте и каков процент того или иного компонента. Этот способ используют абсолютно все области науки: от биологии и медицины до квантовой физики.
  2. Спектр поглощения расскажет, какие ионы и на каких позициях присутствуют в решетке твердого тела.
  3. Вращательный спектр продемонстрирует, насколько далеко находятся молекулы внутри атома, сколько и каких связей присутствует у каждого элемента.

А уж диапазонов применения электромагнитного излучения и не счесть:

  • радиоволны исследуют структуру очень далеких объектов и недра планет;
  • тепловое излучение расскажет об энергии процессов;
  • видимый свет подскажет, в каких направлениях лежат самые яркие звезды;
  • ультрафиолетовые лучи дадут понять, что происходят высокоэнергетические взаимодействия;
  • рентгеновский спектр сам по себе позволяет людям изучать структуру вещества (в том числе и человеческого тела), а наличие этих лучей в космических объектах известят ученых, что в фокусе телескопа нейтронная звезда, вспышка сверхновой или черная дыра.

Абсолютно черное тело

Но есть особый раздел, который изучает, что такое тепловое излучение в физике. В отличие от атомного, тепловое испускание света имеет непрерывный спектр. И наилучшим модельным объектом для расчетов является абсолютно черное тело. Это такой объект, который «ловит» весь попадающий на него свет, но не выпускает обратно. Как ни странно, абсолютно черное тело излучает, и максимум длины волны будет зависеть от температуры модели. В классической физике тепловое излучение порождало парадокс Выходило, что любая нагретая вещь должна была излучать все больше и больше энергии, пока в ультрафиолетовом диапазоне ее энергия не разрушила бы вселенную.

Разрешить парадокс смог Макс Планк. В формулу излучения он ввел новую величину, квант. Не придавая ей особенного физического смысла, он открыл целый мир. Сейчас квантование величин - основа современной науки. Ученые поняли, что поля и явления состоят из неделимых элементов, квантов. Это привело к более глубоким исследованиям материи. Например, современный мир принадлежит полупроводникам. Раньше все было просто: металл проводит ток, остальные вещества - диэлектрики. А вещества типа кремния и германия (как раз полупроводники) ведут себя непонятно по отношению к электричеству. Чтобы научиться управлять их свойствами, потребовалось создать целую теорию и рассчитать все возможности p-n переходов.