Химические свойства воды уравнения. II. Реакции, в которых вода играет роль восстановителя. Физические свойства воды

11.1. Физическое растворение

При попадании какого-либо вещества в воду оно может:
а) раствориться в воде, то есть перемешаться с ней на атомно-молекулярном уровне;
б) вступить с водой в химическую реакцию;
в) не раствориться и не прореагировать.
От чего же зависит результат взаимодействия вещества с водой? Естественно, от характеристик вещества и от характеристик воды.
Начнем с растворения и рассмотрим, какие характеристики воды и взаимодействующих с ней веществ имеют наибольшее значение в этих процессах.
Поместим в две пробирки по небольшой порции нафталина С 10 Н 8 . Нальем в одну из пробирок воду, а в другую – гептан С 7 Н 16 (можно вместо чистого гептана использовать бензин). Нафталин в гептане растворится, а в воде – нет. Проверим, действительно ли нафталин растворился в гептане или прореагировал с ним. Для этого поместим несколько капель раствора на стекло и подождем, пока гептан испарится – на стекле образуются бесцветные пластинчатые кристаллики. В том, что это нафталин, можно убедиться по характерному запаху.

Одно из отличий гептана от воды в том, что его молекулы неполярны, а молекулы воды полярны. Кроме того, между молекулами воды есть водородные связи, а между молекулами гептана их нет.

Для растворения нафталина в гептане требуется разорвать слабые межмолекулярные связи между молекулами нафталина и слабые межмолекулярные связи между молекулами гептана. При растворении образуются столь же слабые межмолекулярные связи между молекулами нафталина и гептана. Тепловой эффект такого процесса практически равен нулю.
За счет чего же нафталин растворяется в гептане? Только за счет энтропийного фактора (растет беспорядок в системе нафталин – гептан).

Для растворения нафталина в воде необходимо, кроме слабых связей между его молекулами, разорвать водородные связи между молекулами воды. При этом водородные связи между молекулами нафталина и воды не образуются. Процесс получается эндотермическим и настолько энергетически невыгодным, что энтропийный фактор здесь помочь не в силах.
А если вместо нафталина взять другое вещество, молекулы которого способны образовывать водородные связи с молекулами воды, то будет ли такое вещество растворяться в воде?
Если нет других препятствий, то будет. Например, вы знаете, что сахар (сахароза С 12 Н 22 О 11) прекрасно растворим в воде. Посмотрев на структурную формулу сахарозы, вы увидите, что в ее молекуле есть группы –О–Н, способные образовывать водородные связи с молекулами воды.
Убедитесь экспериментально, что сахароза малорастворима в гептане, и попробуйте самостоятельно объяснить, почему так различаются свойства нафталина и сахарозы.
Растворение нафталина в гептане и сахарозы в воде называют физическим растворением .

Физически растворяться могут только молекулярные вещества.

Другие компоненты раствора называются растворенными веществами .

Выявленные нами закономерности относятся и к случаям растворения в воде (да и в большинстве других растворителей) жидких и газообразных веществ. Если все вещества, образующие раствор, до растворения находились в одном агрегатном состоянии, то растворителем обычно называют то вещество, которого в растворе больше. Исключение из этого правила – вода: ее обычно называют растворителем, даже если ее меньше, чем растворенного вещества.
Причиной физического растворения вещества в воде может быть не только образование водородных связей между молекулами растворяемого вещества и воды, но и образование других видов межмолекулярных связей. Так бывает прежде всего в случае растворения в воде газообразных веществ (например, углекислого газа или хлора), в которых молекулы вообще не связаны друг с другом, а также некоторых жидкостей с очень слабыми межмолекулярными связями (например, брома). Выигрыш в энергии достигается здесь за счет ориентации диполей (молекул воды) вокруг полярных молекул или полярных связей в растворяемом веществе, а в случае хлора или брома –вызван склонностью к присоединению электронов атомов хлора и брома, сохраняющейся и в молекулах этих простых веществ (подробнее –в § 11.4).
Во всех этих случаях вещества значительно хуже растворяются в воде, чем при образовании водородных связей.
Если из раствора удалить растворитель (например так, как вы это делали в случае раствора нафталина в гептане), то растворенное вещество выделится в химически неизменном виде.

ФИЗИЧЕСКОЕ РАСТВОРЕНИЕ, РАСТВОРИТЕЛЬ.
1.Объясните, почему гептан нерастворим в воде
2.Подскажите знак теплового эффекта растворения в воде этилового спирта (этанола).
3.Почему аммиак хорошо растворим в воде, а кислород – плохо?
4.Какое вещество лучше растворимо в воде – аммиак или фосфин (PH 3)?
5.Объясните причину лучшей растворимости в воде озона, чем кислорода.
6.Определите массовую долю глюкозы (виноградного сахара, С 6 Н 12 О 6) в водном растворе, если для его приготовления использовали 120 мл воды и 30 г глюкозы (плотность воды примите равной 1 г/мл). Какова концентрация глюкозы в этом растворе, если плотность раствора равна 1,15 г/мл?
7.Сколько сахара (сахарозы) можно выделить из 250 г сиропа с массовой долей воды, равной 35 %?.

1. Опыты по растворению различных веществ в различных растворителях.
2. Приготовление растворов.

11.2. Химическое растворение

В первом параграфе мы рассмотрели случаи растворения веществ, при которых химические связи оставались неизменными. Но так бывает далеко не всегда.
Поместим в пробирку несколько кристаллов хлорида натрия и добавим воду. Через некоторое время кристаллы растворятся. Что произошло?
Хлорид натрия – вещество немолекулярное. Кристалл NaCl состоит из ионов Na и Cl . При попадании такого кристалла в воду в нее переходят эти ионы. При этом рвутся ионные связи в кристалле и водородные связи между молекулами воды. Попавшие в воду ионы вступают во взаимодействие с молекулами воды. В случае хлорид-ионов это взаимодействие ограничивается электростатическим притяжением дипольных молекул воды к аниону, а в случае катионов натрия оно приближается по своей природе к донорно-акцепторному. Так или иначе, ионы покрываются гидратной оболочкой (рис. 11.1).

В виде уравнения реакции это можно записать так:

NaCl кр + (n + m )H 2 O = + A

или сокращенно , где индекс aq означает, что ион гидратирован . Такое уравнение называют ионным уравнением .

Можно записать и "молекулярное" уравнение этого процесса:(такое название сохранилось с тех пор, когда предполагалось, что все вещества состоят из молекул)

Гидратированные ионы слабее притягиваются друг к другу, и энергии теплового движения оказывается достаточно для того, чтобы эти ионы не слипались в кристалл.

Практически наличие ионов в растворе легко подтвердить, изучив электропроводность хлорида натрия, воды и получившегося раствора. Вы уже знаете, что кристаллы хлорида натрия электрический ток не проводят, потому что в них хоть и есть заряженные частицы – ионы, но они " закреплены" в кристалле и не могут двигаться. Вода проводит электрический ток очень плохо, потому что в ней хоть и образуются за счет автопротолиза ионы оксония и гидроксид-ионы, но их очень мало. Раствор хлорида натрия, наоборот, хорошо проводит электрический ток, потому что в нем много ионов, и они могут свободно двигаться, в том числе под действием электрического напряжения.
Для разрыва ионных связей в кристалле и водородных связей в воде необходимо затратить энергию. При гидратации ионов энергия выделяется. Если затраты энергии на разрыв связей превышают энергию, выделяющуюся при гидратации ионов, то растворение эндотермическое , а если наоборот, то – экзотермическое.
Хлорид натрия растворяется в воде с практически нулевым тепловым эффектом, следовательно, растворение этой соли происходит только за счет увеличения энтропии. Но обычно растворение сопровождается заметным выделением теплоты (Na 2 CO 3 , CaCl 2 , NaOH и др.) или ее поглощением (KNO 3 , NH 4 Cl и др.), например:

При выпаривании воды из растворов, получившихся при химическом растворении, из них вновь выделяются растворенные вещества в химически неизменном виде.

Химическое растворение – растворение, при котором происходит разрыв химических связей.

И при физическом, и при химическом растворении образуется раствор того вещества, которое мы растворяли, например, раствор сахара в воде или раствор хлорида натрия в воде. Иными словами, растворенное вещество может быть выделено из раствора при удалении воды.

ГИДРАТНАЯ ОБОЛОЧКА, ГИДРАТАЦИЯ, ХИМИЧЕСКОЕ РАСТВОРЕНИЕ.
Приведите по три примера хорошо известных вам веществ а) растворимых в воде или с ней реагирующих, б) не растворимых в воде и не реагирующих с ней.
2.Что является растворителем, а что растворенным веществом (или веществами) в следующих растворах: а) мыльная вода, б) столовый уксус, в) водка г) соляная кислота, д) горючее для мотоцикла, е) аптечная "перекись водорода" , ж) газированная вода, и) " зеленка" , к) одеколон?
В случае затруднения проконсультируйтесь с родителями.
3.Перечислите способы, с помощью которых можно удалить растворитель из жидкого раствора.
4.Как вы понимаете выражение " в химически неизменном виде" в последнем абзаце первого параграфа этой главы? Какие изменения могут произойти с веществом в результате его растворения и последующего выделения из раствора?
5.Известно, что жиры нерастворимы в воде, но хорошо растворяются в бензине. Исходя из этого, что можно сказать о строении молекул жиров?
6.Запишите уравнения химического растворения в воде следующих ионных веществ:
а) нитрата серебра, б) гидроксида кальция, в) йодида цезия, г) карбоната калия, д) нитрита натрия, е) сульфата аммония.
7.Запишите уравнения кристаллизации веществ из растворов, перечисленных в задании 6, при удалении воды.
8.Чем отличаются растворы, полученные при физическом растворении веществ, от растворов, полученных при химическом растворении? Что общего у этих растворов?
9.Определите массу соли, которую надо растворить в 300 мл воды, чтобы получить раствор с массовой долей этой соли, равной 0,1. Плотность воды равна 1 г/мл, а плотность раствора – 1,05 г/мл. Какова концентрация соли в полученном растворе, если ее формульная масса равна 101 Дн?
10.Сколько нужно взять воды и нитрата бария, чтобы приготовить 0,5 л 0,1 М раствора этого вещества (плотность раствора 1,02 г/мл)?
Опыты по растворению ионных веществ в воде.

11.3. Насыщенные растворы. Растворимость

Любая порция помещенного в воду хлорида натрия (или другого подобного вещества) всегда растворялась бы полностью, если бы кроме процесса растворения

не протекал бы обратный процесс – процесс кристаллизации исходного вещества из раствора:

В момент помещения кристалла в воду скорость процесса кристаллизации равна нулю, но, по мере увеличения концентрации ионов в растворе, она увеличивается и в какой-то момент становится равной скорости растворения. Наступает состояние равновесия:

образовавшийся при этом раствор называется насыщенным.

В качестве такой характеристики может быть использована массовая доля растворенного вещества, его концентрация или другая физическая величина, характеризующая состав раствора.
По растворимости в данном растворителе все вещества делятся на растворимые, малорастворимые и практически нерастворимые. Обычно практически нерастворимые вещества называют просто нерастворимыми. За условную границу между растворимыми и малорастворимыми веществами принята растворимость, равная 1 г в 100 г Н 2 О (w 1 %), а за условную границу между малорастворимыми и нерастворимыми веществами – растворимость, равная 0,1 г в 100 г Н 2 О (w 0,1%).
Растворимость вещества зависит от температуры. Так как растворимость – характеристика равновесия, то ее изменение с изменением температуры происходит в полном соответствии с принципом Ле Шателье, то есть при экзотермическом растворении вещества его растворимость с увеличением температуры уменьшается, а при эндотермическом – увеличивается.
Растворы, в которых при тех же условиях растворенного вещества меньше, чем в насыщенных, называются ненасыщенными .

НАСЫЩЕННЫЙ РАСТВОР; НЕНАСЫЩЕННЫЙ РАСТВОР; РАСТВОРИМОСТЬ ВЕЩЕСТВА; РАСТВОРИМЫЕ, МАЛОРАСТВОРИМЫЕ И НЕРАСТВОРИМЫЕ ВЕЩЕСТВА.

1.Запишите уравнения равновесия в системе насыщенный раствор – осадок для а) карбоната калия, б) нитрата серебра и в) гидроксида кальция.
2.Определите массовую долю нитрата калия в насыщенном при 20 °С водном растворе этой соли, если при приготовлении такого раствора к 200 г воды прибавили 100 г нитрата калия, и при этом после окончания приготовления раствора 36,8 г нитрата калия не растворилось.
3.Можно ли при 20 °С приготовить водный раствор хромата калия K 2 CrO 4 с массовой долей растворенного вещества, равной 45 %, если при этой температуре в 100 г воды растворяется не более 63,9 г этой соли.
4.Массовая доля бромида калия в насыщенном водном растворе при 0 °С равна 34,5 %, а при 80 °С – 48,8 %. Определите массу бромида калия, выделившегося при охлаждении до 0 °С 250 г насыщенного при 80°С водного раствора этой соли.
5.Массовая доля гидроксида кальция в насыщенном водном растворе при 20 °С равна 0,12 %. Сколько литров насыщенного при этой температуре раствора гидроксида кальция (известковой воды) можно получить, имея в своем распоряжении 100 г гидроксида кальция? Плотность раствора примите равной 1 г/мл.
6.При 25 °C массовая доля сульфата бария в насыщенном водном растворе составляет 2,33·10 –2 %. Определите минимальный объем воды, необходимой для полного растворения 1 г этой соли.
приготовление насыщенных растворов.

11.4. Химические реакции веществ с водой

Многие вещества при соприкосновении с водой вступают с ней в химические реакции. В результате такого взаимодействия при избытке воды, как и при растворении, получается раствор. Но если из этого раствора удалить воду, исходного вещества мы не получим.

Какие продукты образуются при химической реакции вещества с водой? Это зависит от типа химической связи в веществе; если связи ковалентные, то от степени полярности этих связей. Кроме этого, влияние оказывают и другие факторы, с некоторыми из которых мы познакомимся.

а) Соединения с ионной связью

Большинство ионных соединений либо химически растворяются в воде, либо не растворяются. Особняком стоят ионные гидриды и оксиды, то есть соединения, содержащие те же элементы, что и сама вода, и некоторые другие вещества. Поведение ионных оксидов при контакте с водой рассмотрим на примере оксида кальция.
Оксид кальция, будучи ионным веществом, мог бы химически растворяться в воде. При этом в раствор переходили бы ионы кальция и оксид-ионы. Но двухзарядный анион – не самое устойчивое валентное состояние атома кислорода (хотя бы потому, что энергия сродства ко второму электрону всегда отрицательна, да и радиус оксид-иона сравнительно мал). Поэтому атомы кислорода стремятся понизить свой формальный заряд. В присутствии воды это оказывается возможным. Оказавшиеся на поверхности кристалла оксид-ионы взаимодействуют с молекулами воды. Эту реакцию можно представить в виде схемы, показывающей ее механизм (схемы механизма ).

Для лучшего понимания происходящего условно разделим этот процесс на этапы:
1. Молекула воды поворачивается к оксидному иону атомом водорода (противоположно заряжены).
2. Оксид-ион делится с атомом водорода неподеленной парой электронов; между ними образуется ковалентная связь (образуется по донорно-акцепторному механизму).
3. У атома водорода на единственной валентной орбитали (1s ) оказывается четыре электрона (два "старых" и два "новых"), что противоречит принципу Паули. Поэтому атом водорода отдает пару электронов связи ("старых" электронов) атому кислорода, входящему в состав молекулы воды, тем более что эта пара электронов и так была в значительной степени смещена к атому кислорода. Связь между атомом водорода и атомом кислорода разрывается.
4. За счет образования связи по донорно-акцепторному механизму формальный заряд на бывшем оксидном ионе становится равным –1 е ; на атоме кислорода, входившем прежде в состав молекулы воды, появляется заряд, также равный –1 е . Таким образом образуются два гидроксидных иона.
5. Не связанные теперь ионной связью с оксид-ионами ионы кальция переходят в раствор и гидратируются:

Положительный заряд ионов кальция как бы "размывается" по всему гидратированному иону.
6. Образовавшиеся гидроксид-ионы тоже гидратируются:

Отрицательный заряд гидроксид-иона при этом тоже "размывается".
Суммарное ионное уравнение реакции оксида кальция с водой
CaO кр + H 2 O Ca 2 aq + 2OH aq .

В растворе появляются ионы кальция и гидроксид-ионы в соотношении 1:2. То же самое получилось бы при растворении в воде гидроксида кальция. И действительно, выпарив воду и высушив остаток, мы можем получить из этого раствора кристаллический гидроксид кальция (но отнюдь не оксид!). Поэтому часто уравнение этой реакции записывают так:

CaO кр + H 2 O = Ca(OH) 2р

и называют " молекулярным " уравнением этой реакции. И в тех, и в других уравнениях буквенные индексы иногда не приводят, что часто сильно затрудняет понимание происходящих процессов, а то и просто вводит в заблуждение. Вместе с тем, отсутствие буквенных индексов в уравнениях допустимо, например, при решении расчетных задач
Кроме оксида кальция, точно также взаимодействуют с водой следующие оксиды: Li 2 O, Na 2 O, K 2 O, Rb 2 O, Cs 2 O, SrO, BaO – то есть оксиды тех металлов, которые и сами реагируют с водой. Все эти оксиды относятся к основным оксидам. Остальные ионные оксиды с водой не реагируют.
Совершенно аналогично реагируют с водой и ионные гидриды, например, гидрид натрия NaH. Ион натрия только гидратируется, а гидрид-ион реагирует с молекулой воды:

В результате в растворе остается гидроксид натрия.
Ионное уравнение этой реакции

NaH кр + H 2 O = Na aq + OH aq + H 2 ,

а " молекулярное" уравнение – NaH кр + H 2 O = NaOH р + H 2 .

б) Вещества с металлической связью

В качестве примера рассмотрим взаимодействие с водой натрия.

На схемах кривая полустрелка означает передачу или перемещение о д н о г о э л е к т р о н а

Атом натрия склонен к отдаче своего единственного валентного электрона. Оказавшись в воде, он легко отдает его атому водорода молекулы воды (на нем есть значительный +) и превращается в катион натрия (Na ). Атом водорода, получив электрон, становится нейтральным (Н· ) и больше не может удержать пару электронов, связывающую его с атомом кислорода (вспомните принцип Паули). Эта пара электронов полностью переходит к атому кислорода (в молекуле воды она уже была смещена в его сторону, но только частично). Атом кислорода приобретает формальный заряд A, связь между атомами водорода и кислорода рвется, и образуется гидроксид-ион ( О– Н).
Судьба получившихся частиц различна: ион натрия взаимодействует с другими молекулами воды и, естественно, гидратируется

так же, как и ион натрия, гидратируется гидроксид-ион , а атом водорода, " дождавшись" появления другого такого же атома водорода, образует с ним молекулу водорода 2Н· = Н 2 .
Из-за неполярности своих молекул водород в воде практически нерастворим и выделяется из раствора в виде газа. Ионное уравнение этой реакции

2Na кр + 2H 2 O = 2Na aq + 2OH aq + H 2

a " молекулярное" –

2Na кр + 2H 2 O = 2NaOH р + H 2­

Так же, как натрий, при комнатной температуре с водой бурно реагируют Li, К, Rb, Cs, Ca, Sr, Ba. При нагревании с ней реагирует и Mg, а также некоторые другие металлы.

в) Вещества с ковалентными связями

Из веществ с ковалентными связями с водой могут реагировать только те вещества
а) связи в которых сильно полярны, что придает этим веществам некоторое сходство с ионными соединениями, или
б) в состав которых входят атомы, обладающие очень высокой склонностью к присоединению электронов.
Таким образом, не реагируют с водой и в ней нерастворимы (или очень мало растворимы):
а) алмаз, графит, кремний, красный фосфор и другие простые немолекулярные вещества;
б) диоксид кремния, карбид кремния и другие сложные немолекулярные вещества;
в) метан, гептан и другие молекулярные вещества с малополярными связями;
г) водород, сера, белый фосфор и другие простые молекулярные вещества, атомы которых не очень склонны присоединять электроны, а также азот, молекулы которого очень прочны.
Наибольшее значение имеет взаимодействие с водой молекулярных оксидов, гидридов и гидроксидов, а из простых веществ – галогенов.
Как реагируют с водой молекулярные оксиды, мы рассмотрим на примере триоксида серы:

Молекула воды за счет одной из неподеленных пар электронов атома кислорода атакует положительно заряженный атом серы ( +) и присоединяется к нему связью O– S, на атоме кислорода при этом возникает формальный заряд B. Получив лишние электроны, атом серы перестает удерживать электронную пару одной из -связей, которая полностью переходит к соответствующему атому кислорода, на котором за счет этого возникает формальный заряд A. Затем неподеленная пара электронов этого атома кислорода акцептируется одним из атомов водорода, входившего в состав молекулы воды, который таким образом переходит от одного атома кислорода к другому. В итоге образуется молекула серной кислоты. Уравнение реакции:

SO 3 + H 2 O = H 2 SO 4 .

Аналогично, но несколько более сложно с водой реагирует N 2 O 5 , P 4 O 10 и некоторые другие молекулярные оксиды. Все они – кислотные оксиды.
N 2 O 5 + H 2 O = 2HNO 3 ;
P 4 O 10 + 6H 2 O = 4H 3 PO 4 .

Во всех этих реакциях образуются кислоты, которые при наличии избытка воды с ней реагируют. Но, прежде чем рассмотреть механизм этих реакций, посмотрим, как реагирует с водой хлороводород – молекулярное вещество с сильно полярными ковалентными связями между атомами водорода и хлора:

Полярная молекула хлороводорода, попав в воду, ориентируется так, как это показано на схеме (разноименные заряды диполей притягиваются). Разреженная из-за поляризации электронная оболочка (1s -ЭО) атома водорода акцептирует неподеленную пару sp 3 -гибридных электронов атома кислорода, и водород присоединяется к молекуле воды, полностью отдав атому хлора пару электронов, которая связывала эти атомы в молекуле хлороводорода. В результате атом хлора превращается в хлорид-ион, а молекула воды – в ион оксония. Уравнение реакции:

HCl г + H 2 O = H 3 O aq + Cl aq .

При низких температурах из такого раствора может быть выделен кристаллический хлорид оксония (H 3 O)Cl (t пл = –15 °С).

Взаимодействие HCl и H 2 O можно представить себе и по-другому:

то есть как результат передачи протона от молекулы хлороводорода к молекуле воды. Следовательно, это кислотно-основная реакция.
Аналогично происходит взаимодействие с водой азотной кислоты

что тоже можно представит как передачу протона:

Кислоты, в молекулах которых несколько гидроксилов (OH-групп), реагируют с водой в несколько стадий (ступенчато). Пример – серная кислота.

Второй протон отщепляется значительно труднее, чем первый, поэтому вторая стадия этого процесса обратима. Сравнив величину и распределение зарядов в молекуле серной кислоты и в гидросульфат-ионе, попробуйте самостоятельно объяснить это явление.
При охлаждении из растворов серной кислоты могут быть выделены индивидуальные вещества: (H 3 O)HSO 4 (t пл = 8,5 °С) и (H 3 O) 2 SO 4 (t пл = – 40 °С).
Анионы, образующиеся из молекул кислот после отрыва одного или нескольких протонов, называются кислотными остатками.
Из молекулярных простых веществ с водой при обычных условиях реагируют только F 2 , Cl 2 , Br 2 и, в крайне незначительной степени, I 2 . Фтор бурно реагирует с водой, полностью ее окисляя:

2F 2 + H 2 O = 2HF + OF 2 .

При этом протекают также и другие реакции.
Значительно важнее реакция хлора с водой. Обладая высокой склонностью к присоединению электронов (молярная энергия сродства к электрону атома хлора равна 349 кДж/моль), атомы хлора частично сохраняют ее и в молекуле (молярная энергия сродства к электрону молекулы хлора равна 230 кДж/моль). Поэтому, растворяясь, молекулы хлора гидратируются, притягивая к себе атомы кислорода молекул воды. У некоторых из этих атомов кислорода атомы хлора могут акцептировать неподеленную пару электронов. Дальнейшее показано на схеме механизма:

Суммарное уравнение этой реакции

Cl 2 + 2H 2 O = HClO + H 3 O + Cl .

Но реакция обратима, поэтому устанавливается равновесие:

Cl 2 + 2H 2 O HClO + H 3 O + Cl .

Получившийся раствор называют " хлорной водой" . За счет присутствия в нем хлорноватистой кислоты он обладает сильными окислительными свойствами и используется в качестве отбеливающего и дезинфицирующего средства.
Вспомнив, что Cl и Н 3 О образуются при взаимодействии (" растворении") хлороводорода в воде, можно записать " молекулярное" уравнение:

Cl 2 + H 2 O HClO p + HCl p .

Аналогично с водой реагирует бром, только равновесие в этом случае сильно смещено влево. Йод же с водой практически не реагирует.

Чтобы представить себе, в какой степени хлор и бром физически растворяются в воде, а в какой – реагируют с ней, используем количественные характеристики растворимости и химического равновесия.

Мольная доля хлора в насыщенном при 20°С и атмосферном давлении водном растворе равна 0,0018, то есть на каждую 1000 молекул воды приходится примерно 2 молекулы хлора. Для сравнения, в насыщенном при тех же условиях растворе азота мольная доля азота равна 0,000012, то есть одна молекула азота приходится примерно на 100000 молекул воды. А для получения насыщенного при тех же условиях раствора хлороводорода на каждые 100 молекул воды нужно взять около 35 молекул хлороводорода. Отсюда можно сделать вывод, что хлор хоть и растворим в воде, но незначительно. Растворимость брома несколько больше – примерно 4 молекулы на 1000 молекул воды.

5.Приведите уравнения реакций, позволяющих осуществить следующие превращения:

11.5. Кристаллогидраты

При химическом растворении ионных веществ происходит гидратация переходящих в раствор ионов. Гидратируются как катионы, так и анионы. Как правило, гидратированные катионы прочнее, чем анионы, а гидратированные простые катионы - прочнее, чем сложные. Это связано с тем, что у простых катионов есть свободные валентные орбитали, которые могут частично акцептировать неподеленные электронные пары атомов кислорода, входящих в молекулы воды.
При попытке выделить исходное вещество из раствора, удаляя воду, получить его часто не удается. Например, если мы растворим в воде бесцветный сульфат меди CuSO 4 , то получим раствор голубого цвета, который придают ему гидратированные ионы меди:

После упаривания раствора (удаления воды) и охлаждения из него выделятся кристаллы синего цвета, имеющие состав CuSO 4· 5H 2 O (точка между формулами сульфата меди и воды означает, что на каждую формульную единицу сульфата меди приходится указанное в формуле число молекул воды). Исходный сульфат меди можно получить из этого соединения, нагрев его до 250 ° С. При этом происходит реакция:

CuSO 4· 5H 2 O = CuSO 4 + 5H 2 O .

Исследование строения кристаллов CuSO 4· 5H 2 O показало, что в его формульной единице четыре молекулы воды связаны с атомом меди, а пятая – с сульфатными ионами. Таким образом, формула этого вещества – SO 4· H 2 O, а называется оно моногидрат сульфата тетрааквамеди(II), или просто " медный купорос" .
Четыре молекулы воды, связанные с атомом меди, – остаток гидратной оболочки иона Cu 2 aq , а пятая молекула воды – остаток гидратной оболочки сульфат-иона.
Аналогичное строение имеет соединение SO 4· H 2 O – моногидрат сульфата гексаакважелеза(II), или " железный купорос" .
Другие примеры:
Cl – хлорид гексааквакальция;
Cl 2 – хлорид гексааквамагния.
Эти и подобные им вещества называются кристаллогидратами , а содержащаяся в них вода – кристаллизационной водой .
Часто структура кристаллогидрата бывает неизвестна, или ее невозможно выразить обычными формулами. В этих случаях для кристаллогидратов используются упомянутые выше " формулы с точками" и упрощенные названия, например:
CuSO 4· 5H 2 O – пентагидрат сульфата меди;
Na 2 CO 3· 10H 2 O – декагидрат карбоната натрия;
AlCl 3· 6H 2 O – гексагидрат хлорида алюминия.

При образовании кристаллогидратов из исходных веществ и воды в молекулах воды не происходит разрыва связей О-Н.

Если кристаллизационная вода удерживается в кристаллогидрате слабыми межмолекулярными связями, то она легко удаляется при нагревании:
Na 2 CO 3· 10H 2 O = Na 2 CO 3 + 10H 2 O (при 120 ° С);
K 2 SO 3· 2H 2 O = K 2 SO 3 + 2H 2 O (при 200 ° С);
CaCl 2· 6H 2 O = CaCl 2 + 6H 2 O (при 250 ° С).

Если же в кристаллогидрате связи между молекулами воды и другими частицами близки к химическим, то такой кристаллогидрат или дегидратируется (теряет воду) при более высокой температуре, например:
Al 2 (SO 4) 3· 18H 2 O = Al 2 (SO 4) 3 + 18H 2 O (при 420 ° С);
СoSO 4· 7H 2 O = CoSO 4 + 7H 2 O (при 410 ° С);

или при нагревании разлагается с образованием других химических веществ, например:
2{FeCl 3· 6H 2 O} = Fe 2 O 3 + 6HCl + 9H 2 O (выше 250 ° С);
2{AlCl 3· 6H 2 O} = Al 2 O 3 + 6HCl + 9H 2 O (200 – 450 ° С).

Таким образом, взаимодействие с водой безводных веществ, образующих кристаллогидраты, может быть как химическим растворением, так и химической реакцией.

КРИСТАЛЛОГИДРАТЫ
Определите массовую долю воды в а) пентагидрате сульфата меди, б) дигидрате гидроксида натрия, в) KAl(SO 4) 2· 12H 2 O (алюмокалиевых квасцах).
2.Определите состав кристаллогидрата сульфата магния, если массовая доля воды в нем равна 51,2%. 3.Какова масса воды, выделившейся при прокаливании декагидрата сульфата натрия (Na 2 SO 4· 10H 2 O) массой 644 г?
4.Сколько безводного хлорида кальция можно получить, прокаливая 329 г гексагидрата хлорида кальция?
5.Дигидрат сульфата кальция CaSO 4· 2H 2 О при нагревании до 150° С теряет 3/4 своей воды. Составьте формулу образующегося кристаллогидрата (алебастра) и запишите уравнение превращения гипса в алебастр.
6.Определите массу медного купороса и воды, которые необходимо взять для приготовления 10 кг 5 %-го раствора сульфата меди.
7.Определите массовую долю сульфата железа(II) в растворе, полученном при смешении 100 г железного купороса (FeSO 4· 7H 2 O) с 9900 г воды.
Получение и разложение кристаллогидратов.

Вода - наиболее широко распространённое соединение на нашей планете. Она покрывает 4/5 всей поверхности Земли. Это единственное уникальное соединение, которое может быть в 3х различных агрегатных состояниях: лед, вода и пар.

Вода играет важнейшую роль не только в промышленности, но и в жизни каждого человека. Известно, что без пищи человек может прожить месяц, а без воды не проживет и недели.

Чистой воды в природе не существует, всегда есть примеси. Для очистки от этих загрязнений используют процесс дистилляции, отгонки, поэтому часто можно встретить фразу «дистиллированная вода»,

Вода не обладает запахом, цветом и вкусом.

Химические свойства воды.

Вода - химическое соединение. Связь имеет ковалентный характер.

Вода служит отличным растворителем для многих веществ, благодаря значительному дипольному моменту. Процесс растворения называется гидратацией, а те вещества, которые вступают в реакции гидратации, чаще всего являются электролитами (проводят электрический ток).

1. Кислотно-основные реакции. Вода обладает амфотерностью, поэтому может вступать в реакции с кислотами и с основаниями:

BaO + H 2 O = Ba(OH) 2 ,

N 2 O 5 + H 2 O = 2HNO 3 .

2. Вода реагирует практически со всеми солями, образуя гидраты:

CaCl 2 + 6 H 2 O = CaCl 2·6 H 2 O .

3. Вода окисляет металлы, стоящие в ряду напряжения до олова. С щелочными металлами (Na , Li , K ) бурно реагирует:

2 K + H 2 O =2 KOH + H 2 .

С менее активными с металлами вода реагирует при нагреве:

Ca + 2H 2 O = Ca(OH) 2 +Н 2 .

Вода (оксид водорода) - химическое вещество в виде прозрачной жидкости, не имеющей цвета (в малом объёме), запаха и вкуса. Химическая формула: Н 2 O. В твёрдом состоянии называется льдом, снегом или инеем, а в газообразном - водяным паром. Около 71 % поверхности Земли покрыто водой (океаны, моря, озёра, реки, льды). В природных условиях всегда содержит растворенные вещества (соли, газы).

Имеет ключевое значение в создании и поддержании жизни на Земле, в химическом строении живых организмов, в формировании климата и погоды. Является наиважнейшим пищевым веществом для всех живых существ на планете Земля.

Физические свойства

В нормальных атмосферных условиях сохраняет жидкое агрегатное состояние, тогда как аналогичные водородные соединения являются газами. Это объясняется особыми характеристиками слагающих молекулы атомов и присутствием связей между ними. Атомы водорода присоединены к атому кислорода, образуя угол 104,45°, и эта конфигурация строго сохраняется. Из-за большой разности электроотрицательностей атомов водорода и кислорода электронные облака сильно смещены в сторону кислорода. По этой причине молекула воды является активным диполем, где кислородная сторона отрицательна, а водородная положительна. В результате молекулы воды притягиваются своими противоположными полюсами, и образуют полярные связи, на разрыв которых требуется много энергии. В составе каждой молекулы Ион водорода (протон) не имеет внутренних электронных слоев и обладает малыми размерами, в результате чего он может проникать в электронную оболочку отрицательно поляризованного атома кислорода соседней молекулы, образуя водородную связь с другой молекулой. Каждая молекула связана с четырьмя другими посредством водородных связей - две из них образует атом кислорода и две атомы водорода. Комбинация этих связей между молекулами воды - полярной и водородной и определяет очень высокую температуру её кипения и удельную теплоты парообразования. В результате этих связей в водной среде возникает давление в 15-20 тыс. атмосфер, которое и объясняет причину трудносжимаемости воды, так при увеличении атмосферного давления на 1 Бар, вода сжимается на 0,00005 доли её начального объёма.

Вода обладает также высоким поверхностным натяжением среди жидкостей, уступая в этом только ртути. Относительно высокая вязкость воды обусловлена тем, что водородные связи мешают молекулам воды двигаться с разными скоростями.

По сходным причинам вода является хорошим растворителем полярных веществ. Каждая молекула растворяемого вещества окружается молекулами воды, причём положительно заряженные участки молекулы растворяемого вещества притягивают атомы кислорода, а отрицательно заряженные - атомы водорода. Поскольку молекула воды мала по размерам, много молекул воды могут окружить каждую молекулу растворяемого вещества. Это свойство воды используется живыми существами. В живой клетке и в межклеточном пространстве вступают во взаимодействие растворы различных веществ в воде. Вода необходима для жизни всех без исключения одноклеточных и многоклеточных живых существ на Земле.

Химические свойства

Вода химически довольно активное вещество . Сильно полярные молекулы воды сольватируют ионы и молекулы, образуют гидраты и кристаллогидраты. Сольволиз, и в частностигидролиз, происходит в живой и неживой природе, и широко используется в химической промышленности.

Вода реагирует при комнатной температуре:

  • с активными металлами (натрий, калий, кальций, барий и др.);
  • с галогенами (фтором, хлором) и межгалоидными соединениями;
  • с солями, образованными слабой кислотой и слабым основанием, вызывая их полный гидролиз;
  • с ангидридами и галогенангидридами карбоновых и неорганических кислот;
  • с активными металлорганическими соединениями (диэтилцинк, реактивы Гриньяра, метилнатрий и т. д.);
  • с карбидами, нитридами, фосфидами, силицидами, гидридами активных металлов (кальция, натрия, лития и др.);
  • со многими солями, образуя гидраты;
  • с боранами, силанами;
  • с кетенами, недоокисью углерода;
  • с фторидами благородных газов.

Вода реагирует при нагревании:

  • с железом, магнием;
  • с углем, метаном;
  • с некоторыми алкилгалогенидами.

Вода реагирует в присутствии катализатора:

  • с амидами, эфирами карбоновых кислот;
  • с ацетиленом и другими алкинами;
  • с алкенами;
  • с нитрилами.

Вода и спорт

Спортсмены должны потреблять жидкость, но сколько именно воды нужно потреблять?

Количество воды или другой жидкости, которое вам необходимо до, во время и после физических упражнений во многом зависит от интенсивности и продолжительности этих упражнений. Но есть и другие факторы, такие как температура воздуха, влажность, высота и даже ваша собственная физиология. Все это может повлиять на то, сколько воды вам нужно на время тренировки.

Сколько же воды нужно потреблять ежедневно?

Если вы регулярно тренируетесь, то вам, вероятно, понадобится выпивать от половины до целой унции воды (или другой жидкости) на каждый фунт веса тела в день.

Чтобы определить базовый диапазон потребности в воде, используйте следующую формулу:

Низший предел диапазона = масса тела (кг) х 0,5 = (унции жидкости / день)
Высший предел диапазона = масса тела (кг) х 1 = (унции жидкости / день)

Когда пить воду во время занятий спортом?

Начинайте свой день с большого стакана воды каждое утро, независимо от того, собираетесь ли вы заниматься спортом или будете отдыхать. На время тренировочных дней действует следующий график, который эффективен для большинства спортсменов:

  1. Перед упражнениями
    Выпивайте две-три чашки воды в течение двух часов до тренировки. Взвешивайтесь непосредственно перед началом тренировок.
  2. Во время тренировки
    Выпивайте одну чашку воды каждые 15 минут.
  3. После упражнений
    Взвешивайтесь сразу после окончания тренировки.
    Выпивайте две-три чашки воды на каждый фунт веса тела, который вы потеряли во время упражнений.

Сколько воды следует потреблять во время силовых упражнений?

Если ваша тренировка длится более 90 минут при интенсивности от умеренной до высокой, вам необходимо потреблять нечто большее, чем простую воду. Вам нужно пополнить запасы гликогена с помощью простых углеводов. Спортивные напитки являются наиболее простым способом получения необходимой энергии. Для более продолжительных тренировок выбирайте напитки от 60 до 100 калорий на восемь унций и потребляйте от восьми до десяти граммов каждые 15 - 30 минут.

Для тех, кто находится в экстремальных условиях в течение трех, четырех или пяти часов придется заменить электролиты. Комплексные спортивные напитки и специальные продукты питания помогут снабдить ваш организм калориями и электролитами, необходимыми для непрерывной работы.

  • В среднем в организме растений и животных содержится более 50 % воды.
  • В составе мантии Земли воды содержится в 10-12 раз больше, чем количество воды в Мировом океане.
  • При средней глубине в 3,6 км Мировой океан покрывает около 71 % поверхности планеты и содержит 97,6 % известных мировых запасов свободной воды.
  • Если бы на Земле не было впадин и выпуклостей, вода покрыла бы всю Землю, и её толщина была бы 3 км.
  • Если бы все ледники растаяли, то уровень воды на Земле поднялся бы на 64 м и около 1/8 поверхности суши было бы затоплено водой.
  • Морская вода при обычной её солёности 35 ‰ замерзает при температуре −1,91 °C.
  • Иногда вода замерзает при положительной температуре.
  • При определённых условиях (внутри нанотрубок) молекулы воды образуют новое состояние, при котором они сохраняют способность течь даже при температурах, близких к абсолютному нулю.
  • Вода отражает 5 % солнечных лучей, в то время как снег - около 85 %. Под лёд океана проникает только 2 % солнечного света.
  • Синий цвет чистой океанской воды объясняется избирательным поглощением и рассеянием света в воде.
  • С помощью капель воды из кранов можно создать напряжение до 10 киловольт, опыт называется «Капельница Кельвина».
  • Существует следующая поговорка с использованием формулы воды - H2O: «Сапоги мои того - пропускают H2O». Вместо сапог в поговорке может участвовать и другая дырявая обувь.
  • Вода - это одно из немногих веществ в природе, которые расширяются при переходе из жидкой фазы в твёрдую (кроме воды, таким свойством обладают висмут, галлий, германий и некоторые соединения и смеси).
  • Вода и водяной пар горят в атмосфере фтора. Смеси водяного пара со фтором в пределах взрывчатых концентраций взрывоопасны. В результате этой реакции образуются фтороводород и элементарный кислород.

ЗАПОМНИТЕ!!!

Щелочные металлы – это I группа, А - главная подгруппа – Li , Na , K , Rb , Cs , Fr

Щелочно-земельные металлы – это II группа, А – главная подгруппа (Be , Mg не относятся) – Ca , Sr , Ba , Ra

n I

Основания Ме(ОН) n

ОН – гидроксильная группа, с валентностью (I )

Щёлочи – это растворимые в воде основания (см. ТАБЛИЦУ РАСТВОРИМОСТИ)

I n

Кислоты – это сложные вещества с общей формулой Н n (КО)

(КО) – кислотный остаток

V - VII

Кислотный оксид – неМе х О у иМе х О у

I, II

Основные оксиды Ме х О у

I. Взаимодействие воды с металлами.

В зависимости от активности металла, реакция протекает при различных условиях и образуются разные продукты.

1). Взаимодействие с самыми активными металлами , стоящими в периодической системе в I А иI I А группах (щелочные и щелочно-земельные металлы) и алюминий . В ряду активности эти металлы расположены до алюминия (включительно)

Реакция протекает при обычных условиях, при этом образуется щелочь и водород.

I I

2Li + 2 H 2 O =2 Li OH + H 2

HOH гидроксид

лития

I II

Ba + 2 H 2 O= Ba (OH) 2 + H 2

2 Al + 6 H 2 O = 2Al (OH) 3 + 3 H 2

гидроксид

алюминия

ОН – гидроксогруппа, она всегда одновалентна

ВЫВОД – активные металлы - Li , Na , K , Rb , Cs , Fr , Ca , Sr , Ba , Ra + Al – реагируют так

Me + H 2 O =Me(OH) n + H 2 ( р . замещения )

Основание

2) Взаимодействие с менее активными металлами , которые расположены в ряду активности от алюминия до водорода.

Реакция протекает только с парообразной водой, т.е. при нагревании.

При этом образуются: оксид этого металла и водород.

I II I

Fe + H 2 O = FeO + H 2 (протекает реакция замещения)

оксид

железа

Ni + H 2 O = NiO + H 2

(Валентность металла можно легко определить по ряду активности металлов, над их символом стоит значение, например +2, это означает, что валентность этого металла равна 2) .

ВЫВОД – металлы средней активности, стоящие в ряду активности до (Н 2) – Be , Mg , Fe , Pb , Cr , Ni , Mn , Zn – реагируют так

3) Металлы, стоящие в ряду активности после водорода, не реагируют с водой.

Cu + H 2 O = нет реакции

I I.Взаимодействие с оксидами (основными и кислотными)

С водой взаимодействуют только такие оксиды, которые при взаимодействии с водой дают растворимый в воде продукт(кислоту или щелочь).

1). Взаимодействие с основными оксидами.

С водой взаимодействуют только основные оксиды активных металлов, которые расположены в в I А иI I А группах, кроме Ве и Mg (оксид алюминия не реагирует, т.к. он амфотерный). Реакция протекает при обычных условиях, при этом образуется только щелочь.

I II

Na 2 O + H 2 O = 2 NaOHBaO + H 2 O =Ba (OH) 2 (протекает реакция соединения)

2) Взаимодействие кислотных оксидов с водой.

Кислотные оксиды реагируют с водой все. Исключение составляет только SiO 2 .

При этом образуются кислоты. Во всех кислотах на первом месте расположен водород, поэтому уравнение реакции записывают так:

SO 3 + H 2 O = H 2 SO 4 P 2 O 5 + H 2 O=2 HPO 3

SO 3 холодная

+H 2 O P 2 O 5

H 2 SO 4+ H 2 O

H 2 P 2 O 6

P 2 O 5 +3 H 2 O=2 H 3 PO 4

Горячая

P 2 O 5

+ H 6 O 3

H 6 P 2 O 8

Обратите внимание , что в зависимости от температуры воды при взаимодействии с Р 2 О 5 образуются разные продукты.

IV Взаимодействие воды c неметаллами

Примеры: Cl 2 +H 2 O =HCl +HClO

C +H 2 O =CO +H 2

угольугарный газ

Si +2H 2 O =SiO 2 +2H 2 .

Вода (оксид водорода) - бинарное неорганическое соединение с химической формулой Н 2 O. Молекула воды состоит из двух атомов водорода и одного - кислорода, которые соединены между собой ковалентной связью.

Пероксид водорода.


Физические и химические свойства

Физические и химические свойства воды определяются химическим, электронным и пространственным строением молекул Н 2 O.

Атомы Н и О в молекуле Н 2 0 находятся в своих устойчивых степенях окисления, соответственно +1 и -2; поэтому вода не проявляет ярко выраженных окислительных или восстановительных свойств. Обратите внимание: в гидридах металлов водород находится в степени окисления -1.



Молекула Н 2 O имеет угловое строение. Связи Н-O очень полярны. На атоме О существует избыточный отрицательный заряд, на атомах Н - избыточные положительные заряды. 8 целом молекула Н 2 O является полярной, т.е. диполем. Этим объясняется тот факт, что вода является хорошим растворителем для ионных и полярных веществ.



Наличие избыточных зарядов на атомах Н и О, а также неподеленных электронных пар у атомов О обусловливает образование между молекулами воды водородных связей, вследствие чего они объединяются в ассоциаты. Существованием этих ассоциатов объясняются аномально высокие значения т. пл. и т. кип. воды.

Наряду с образованием водородных связей, результатом взаимного влияния молекул Н 2 O друг на друга является их самоионизация:
в одной молекуле происходит гетеролитический разрыв полярной связи О-Н, и освободившийся протон присоединяется к атому кислорода другой молекулы. Образующийся ион гидроксония Н 3 О + по существу является гидратированным ионом водорода Н + Н 2 O, поэтому упрощенно уравнение самоионизации воды записывается так:


Н 2 O ↔ H + + OH -


Константа диссоциации воды чрезвычайно мала:



Это свидетельствует о том, что вода очень незначительно диссоциирует на ионы, и поэтому концентрация недиссоциированных молекул Н 2 O практически постоянна:




В чистой воде [Н + ] = [ОН - ] = 10 -7 моль/л. Это означает, что вода представляет собой очень слабый амфотерный электролит, не проявляющий в заметной степени ни кислотных, ни основных свойств.
Однако вода оказывает сильное ионизирующее действие на растворенные в ней электролиты. Под действием диполей воды полярные ковалентные связи в молекулах растворенных веществ превращаются в ионные, ионы гидратируются, связи между ними ослабляются, в результате чего происходит электролитическая диссоциация. Например:
HCl + Н 2 O - Н 3 O + + Сl -

(сильный электролит)


(или без учета гидратации: HCl → Н + + Сl -)


CH 3 COOH + H 2 O ↔ CH 3 COO - + H + (слабый электролит)


(или CH 3 COOH ↔ CH 3 COO - + H +)


Согласно теории кислот и оснований Брёнстеда-Лоури, в этих процессах вода проявляет свойства основания (акцептор протонов). По той же теории в роли кислоты (донора протонов) вода выступает в реакциях, например, с аммиаком и аминами:


NH 3 + H 2 O ↔ NH 4 + + OH -


CH 3 NH 2 + H 2 O ↔ CH 3 NH 3 + + OH -

Окислительно-восстановительные реакции с участием воды

I. Реакции, в которых вода играет роль окислителя

Эти реакции возможны только с сильными восстановителями, которые способны восстановить ионы водорода, входящие в состав молекул воды, до свободного водорода.


1) Взаимодействие с металлами


а) При обычных условиях Н 2 О взаимодействует только со щел. и щел.-зем. металлами:


2Na + 2Н + 2 О = 2NaOH + H 0 2


Ca + 2Н + 2 О = Ca(OH) 2 + H 0 2


б) При высокой температуре Н 2 О вступает в реакции и с некоторыми другими металлами, например:


Mg + 2Н + 2 О = Mg(OH) 2 + H 0 2


3Fe + 4Н + 2 О = Fe 2 O 4 + 4H 0 2


в) Al и Zn вытесняют Н 2 из воды в присутствии щелочей:


2Al + 6Н + 2 О + 2NaOH = 2Na + 3H 0 2


2) Взаимодействие с неметаллами, имеющими низкую ЭО (реакции происходят в жестких условиях)


C + Н + 2 О = CO + H 0 2 («водяной газ»)


2P + 6Н + 2 О = 2HPO 3 + 5H 0 2


В присутствии щелочей кремний вытесняет водород из воды:


Si + Н + 2 О + 2NaOH = Na 2 SiO 3 + 2H 0 2


3) Взаимодействие с гидридами металлов


NaH + Н + 2 O = NaOH + H 0 2


CaH 2 + 2Н + 2 О = Ca(OH) 2 + 2H 0 2


4) Взаимодействие с угарным газом и метаном


CO + Н + 2 O = CO 2 + H 0 2


2CH 4 + O 2 + 2Н + 2 O = 2CO 2 + 6H 0 2


Реакции используются в промышленности для получения водорода.

II. Реакции, в которых вода играет роль восстановителя

ти реакции возможны только с очень сильными окислителями, которые способны окислить кислород СО С. О. -2, входящий в состав воды, до свободного кислорода O 2 или до пероксид-анионов 2- . В исключительном случае (в реакции с F 2) образуется кислород со c o. +2.


1) Взаимодействие с фтором


2F 2 + 2Н 2 O -2 = O 0 2 + 4HF



2F 2 + Н 2 O -2 = O +2 F 2 + 2HF


2) Взаимодействие с атомарным кислородом


Н 2 O -2 + O = Н 2 O - 2


3) Взаимодействие с хлором


При высокой Т происходит обратимая реакция


2Cl 2 + 2Н 2 O -2 = O 0 2 + 4HCl

III. Реакции внутримолекулярного окисления - восстановления воды.

Под действием электрического тока или высокой температуры может происходить разложение воды на водород и кислород:


2Н + 2 O -2 = 2H 0 2 + O 0 2


Термическое разложение - процесс обратимый; степень термического разложения воды невелика.

Реакции гидратации

I. Гидратация ионов. Ионы, образующиеся при диссоциации электролитов в водных растворах, присоединяют определенное число молекул воды и существуют в виде гидратированных ионов. Некоторые ионы образуют столь прочные связи с молекулами воды, что их гидраты могут существовать не только в растворе, но и в твердом состоянии. Этим объясняется образование кристаллогидратов типа CuSO4 5H 2 O, FeSO 4 7Н 2 O и др., а также аквакомплексов: CI 3 , Br 4 и др.

II. Гидратация оксидов

III. Гидратация органических соединений, содержащих кратные связи

Реакции гидролиза

I. Гидролиз солей


Обратимый гидролиз:


а) по катиону соли


Fe 3+ + Н 2 O = FeOH 2+ + Н + ; (кислая среда. рН

б) по аниону соли


СО 3 2- + Н 2 O = НСО 3 - + ОН - ; (щелочная среда. рН > 7)


в) по катиону и по аниону соли


NH 4 + + СН 3 СОО - + Н 2 O = NH 4 OH + СН 3 СООН (среда, близкая к нейтральной)


Необратимый гидролиз:


Al 2 S 3 + 6Н 2 O = 2Аl(ОН) 3 ↓ + 3H 2 S


II. Гидролиз карбидов металлов


Al 4 C 3 + 12Н 2 O = 4Аl(ОН) 3 ↓ + 3CH 4 нетан


СаС 2 + 2Н 2 O = Са(ОН) 2 + С 2 Н 2 ацетилен


III. Гидролиз силицидов, нитридов, фосфидов


Mg 2 Si + 4Н 2 O = 2Mg(OH) 2 ↓ + SiH 4 силан


Ca 3 N 2 + 6Н 2 O = ЗСа(ОН) 2 + 2NH 3 аммиак


Cu 3 P 2 + 6Н 2 O = ЗСu(ОН) 2 + 2РН 3 фосфин


IV. Гидролиз галогенов


Cl 2 + Н 2 O = HCl + HClO


Вr 2 + Н 2 O = НВr + НВrО


V. Гидролиз органических соединений


Классы органических веществ

Продукты гидролиза (органические)

Галогеналканы (алкилгалогениды)

Арилгалогениды

Дигалогеналканы

Альдегиды или кетоны

Алкоголяты металлов

Галогенангидриды карбоновых кислот

Карбоновые кислоты

Ангидриды карбоновых кислот

Карбоновые кислоты

Сложные зфиры карбоновых кислот

Карбоновые кислоты и спирты

Глицерин и высшие карбоновые кислоты

Ди- и полисахариды

Моносахариды

Пептиды и белки

α-Аминокислоты

Нуклеиновые кислоты