1 proprietate grafică a funcției de putere. O funcție exponențială - proprietăți, grafice, formule. Proprietățile funcției cosinus

Sunteți familiarizat cu caracteristicile y=x, y=x2, y=x3, y=1/x etc. Toate aceste funcții sunt cazuri speciale ale funcției de putere, adică funcția y=xp, unde p este un număr real dat.
Proprietățile și graficul unei funcții de putere depind în esență de proprietățile unei puteri cu un exponent real și, în special, de valorile pentru care Xși p are sens X p. Să trecem la o analiză similară a diferitelor cazuri, în funcție de
exponent p.

  1. Index p=2n-chiar numar natural.
y=x2n, Unde n este un număr natural, are următoarele

proprietati:

  • domeniul de definiție este toate numerele reale, adică mulțimea R;
  • set de valori - numere nenegative, adică y este mai mare sau egal cu 0;
  • funcţie y=x2n chiar, pentru că x 2n=(- x) 2n
  • funcția este în scădere pe interval X<0 și crescând pe interval x>0.
Graficul funcției y=x2n are aceeași formă ca, de exemplu, graficul unei funcții y=x4.

2. Indicator p=2n-1- număr natural impar
În acest caz, funcția de putere y=x 2n-1, unde este un număr natural, are următoarele proprietăți:

  • domeniul definirii - multimea R;
  • set de valori - set R;
  • funcţie y=x 2n-1 ciudat pentru că (- x) 2n-1=x2n-1;
  • funcția este în creștere pe toată axa reală.
Graficul funcției y=x 2n-1 are aceeași formă ca, de exemplu, graficul funcției y=x 3 .

3.Indicator p=-2n, Unde n- numar natural.

În acest caz, funcția de putere y=x -2n=1/x2n are urmatoarele proprietati:

  • domeniul de definitie - multimea R, cu exceptia x=0;
  • set de valori - numere pozitive y>0;
  • funcția y =1/x2n chiar, pentru că 1/(-x) 2n=1/x2n;
  • funcția crește pe intervalul x<0 и убывающей на промежутке x>0.
Graficul funcției y =1/x2n are aceeași formă ca, de exemplu, graficul funcției y =1/x2.

Pe domeniul funcției de putere y = x p sunt valabile următoarele formule:
; ;
;
; ;
; ;
; .

Proprietățile funcțiilor de putere și graficele acestora

Funcția de putere cu exponent egal cu zero, p = 0

Dacă exponentul funcției de putere y = x p este egal cu zero, p = 0 , atunci funcția de putere este definită pentru toate x ≠ 0 și este constantă, egală cu unu:
y \u003d x p \u003d x 0 \u003d 1, x ≠ 0.

Funcția de putere cu exponent natural impar, p = n = 1, 3, 5, ...

Considerăm o funcție de putere y = x p = x n cu exponent natural impar n = 1, 3, 5, ... . Un astfel de indicator poate fi scris și ca: n = 2k + 1, unde k = 0, 1, 2, 3, ... este un întreg nenegativ. Mai jos sunt proprietățile și graficele unor astfel de funcții.

Graficul unei funcții de putere y = x n cu un exponent impar natural pentru diferite valori ale exponentului n = 1, 3, 5, ... .

Domeniu: -∞ < x < ∞
Valori multiple: -∞ < y < ∞
Paritate: impar, y(-x) = - y(x)
Monoton: crește monoton
Extreme: Nu
Convex:
la -∞< x < 0 выпукла вверх
la 0< x < ∞ выпукла вниз
Puncte de întrerupere: x=0, y=0
x=0, y=0
Limite:
;
Valori private:
la x = -1,
y(-1) = (-1) n ≡ (-1) 2k+1 = -1
pentru x = 0, y(0) = 0 n = 0
pentru x = 1, y(1) = 1 n = 1
Funcția inversă:
pentru n = 1, funcția este inversă față de ea însăși: x = y
pentru n ≠ 1, funcția inversă este o rădăcină de grad n:

Funcția de putere cu exponent natural par, p = n = 2, 4, 6, ...

Se consideră o funcție de putere y = x p = x n cu exponent natural par n = 2, 4, 6, ... . Un astfel de indicator poate fi scris și ca: n = 2k, unde k = 1, 2, 3, ... este un număr natural. Proprietățile și graficele acestor funcții sunt prezentate mai jos.

Graficul unei funcții de putere y = x n cu un exponent natural par pentru diferite valori ale exponentului n = 2, 4, 6, ... .

Domeniu: -∞ < x < ∞
Valori multiple: 0 ≤ y< ∞
Paritate: par, y(-x) = y(x)
Monoton:
pentru x ≤ 0 scade monoton
pentru x ≥ 0 crește monoton
Extreme: minim, x=0, y=0
Convex: convex în jos
Puncte de întrerupere: Nu
Puncte de intersecție cu axele de coordonate: x=0, y=0
Limite:
;
Valori private:
pentru x = -1, y(-1) = (-1) n ≡ (-1) 2k = 1
pentru x = 0, y(0) = 0 n = 0
pentru x = 1, y(1) = 1 n = 1
Funcția inversă:
pentru n = 2, rădăcină pătrată:
pentru n ≠ 2, rădăcină de grad n:

Funcție de putere cu exponent negativ întreg, p = n = -1, -2, -3, ...

Se consideră o funcție de putere y = x p = x n cu un exponent întreg negativ n = -1, -2, -3, ... . Dacă punem n = -k, unde k = 1, 2, 3, ... este un număr natural, atunci acesta poate fi reprezentat ca:

Graficul unei funcții de putere y = x n cu un exponent întreg negativ pentru diferite valori ale exponentului n = -1, -2, -3, ... .

Exponent impar, n = -1, -3, -5, ...

Mai jos sunt proprietățile funcției y = x n cu un exponent negativ impar n = -1, -3, -5, ... .

Domeniu: x ≠ 0
Valori multiple: y ≠ 0
Paritate: impar, y(-x) = - y(x)
Monoton: scade monoton
Extreme: Nu
Convex:
la x< 0 : выпукла вверх
pentru x > 0 : convex în jos
Puncte de întrerupere: Nu
Puncte de intersecție cu axele de coordonate: Nu
Semn:
la x< 0, y < 0
pentru x > 0, y > 0
Limite:
; ; ;
Valori private:
pentru x = 1, y(1) = 1 n = 1
Funcția inversă:
pentru n = -1,
pentru n< -2 ,

Exponent par, n = -2, -4, -6, ...

Mai jos sunt proprietățile funcției y = x n cu exponent negativ par n = -2, -4, -6, ... .

Domeniu: x ≠ 0
Valori multiple: y > 0
Paritate: par, y(-x) = y(x)
Monoton:
la x< 0 : монотонно возрастает
pentru x > 0 : monoton în scădere
Extreme: Nu
Convex: convex în jos
Puncte de întrerupere: Nu
Puncte de intersecție cu axele de coordonate: Nu
Semn: y > 0
Limite:
; ; ;
Valori private:
pentru x = 1, y(1) = 1 n = 1
Funcția inversă:
pentru n = -2,
pentru n< -2 ,

Funcția de putere cu exponent rațional (fracțional).

Considerăm o funcție de putere y = x p cu un exponent rațional (fracțional), unde n este un număr întreg, m > 1 este un număr natural. Mai mult, n, m nu au divizori comuni.

Numitorul indicatorului fracționar este impar

Fie numitorul exponentului fracționar impar: m = 3, 5, 7, ... . În acest caz, funcția de putere x p este definită atât pentru valorile x pozitive cât și negative. Luați în considerare proprietățile unor astfel de funcții de putere atunci când exponentul p este în anumite limite.

p este negativ, p< 0

Fie exponentul rațional (cu numitor impar m = 3, 5, 7, ... ) mai mic decât zero: .

Grafice ale funcțiilor exponențiale cu un exponent negativ rațional pentru diferite valori ale exponentului, unde m = 3, 5, 7, ... este impar.

Numător impar, n = -1, -3, -5, ...

Iată proprietățile funcției de putere y = x p cu un exponent negativ rațional , unde n = -1, -3, -5, ... este un număr întreg negativ impar, m = 3, 5, 7 ... este un număr natural impar.

Domeniu: x ≠ 0
Valori multiple: y ≠ 0
Paritate: impar, y(-x) = - y(x)
Monoton: scade monoton
Extreme: Nu
Convex:
la x< 0 : выпукла вверх
pentru x > 0 : convex în jos
Puncte de întrerupere: Nu
Puncte de intersecție cu axele de coordonate: Nu
Semn:
la x< 0, y < 0
pentru x > 0, y > 0
Limite:
; ; ;
Valori private:
pentru x = -1, y(-1) = (-1) n = -1
pentru x = 1, y(1) = 1 n = 1
Funcția inversă:

Numător par, n = -2, -4, -6, ...

Proprietățile unei funcții de putere y = x p cu un exponent rațional negativ, unde n = -2, -4, -6, ... este un număr întreg negativ par, m = 3, 5, 7 ... este un număr natural impar .

Domeniu: x ≠ 0
Valori multiple: y > 0
Paritate: par, y(-x) = y(x)
Monoton:
la x< 0 : монотонно возрастает
pentru x > 0 : monoton în scădere
Extreme: Nu
Convex: convex în jos
Puncte de întrerupere: Nu
Puncte de intersecție cu axele de coordonate: Nu
Semn: y > 0
Limite:
; ; ;
Valori private:
pentru x = -1, y(-1) = (-1) n = 1
pentru x = 1, y(1) = 1 n = 1
Funcția inversă:

Valoarea p este pozitivă, mai mică de unu, 0< p < 1

Graficul unei funcții de putere cu un exponent rațional (0< p < 1 ) при различных значениях показателя степени , где m = 3, 5, 7, ... - нечетное.

Numător impar, n = 1, 3, 5, ...

< p < 1 , где n = 1, 3, 5, ... - нечетное натуральное, m = 3, 5, 7 ... - нечетное натуральное.

Domeniu: -∞ < x < +∞
Valori multiple: -∞ < y < +∞
Paritate: impar, y(-x) = - y(x)
Monoton: crește monoton
Extreme: Nu
Convex:
la x< 0 : выпукла вниз
pentru x > 0 : convex în sus
Puncte de întrerupere: x=0, y=0
Puncte de intersecție cu axele de coordonate: x=0, y=0
Semn:
la x< 0, y < 0
pentru x > 0, y > 0
Limite:
;
Valori private:
pentru x = -1, y(-1) = -1
pentru x = 0, y(0) = 0
pentru x = 1, y(1) = 1
Funcția inversă:

Numător par, n = 2, 4, 6, ...

Sunt prezentate proprietățile funcției de putere y = x p cu un exponent rațional , fiind în 0.< p < 1 , где n = 2, 4, 6, ... - четное натуральное, m = 3, 5, 7 ... - нечетное натуральное.

Domeniu: -∞ < x < +∞
Valori multiple: 0 ≤ y< +∞
Paritate: par, y(-x) = y(x)
Monoton:
la x< 0 : монотонно убывает
pentru x > 0 : crescător monoton
Extreme: minim la x = 0, y = 0
Convex: convex în sus la x ≠ 0
Puncte de întrerupere: Nu
Puncte de intersecție cu axele de coordonate: x=0, y=0
Semn: pentru x ≠ 0, y > 0
Limite:
;
Valori private:
pentru x = -1, y(-1) = 1
pentru x = 0, y(0) = 0
pentru x = 1, y(1) = 1
Funcția inversă:

Exponentul p este mai mare decât unu, p > 1

Graficul unei funcții de putere cu un exponent rațional (p > 1) pentru diferite valori ale exponentului, unde m = 3, 5, 7, ... este impar.

Numător impar, n = 5, 7, 9, ...

Proprietățile unei funcții de putere y = x p cu un exponent rațional mai mare de unu: . Unde n = 5, 7, 9, ... este un număr natural impar, m = 3, 5, 7 ... este un număr natural impar.

Domeniu: -∞ < x < ∞
Valori multiple: -∞ < y < ∞
Paritate: impar, y(-x) = - y(x)
Monoton: crește monoton
Extreme: Nu
Convex:
la -∞< x < 0 выпукла вверх
la 0< x < ∞ выпукла вниз
Puncte de întrerupere: x=0, y=0
Puncte de intersecție cu axele de coordonate: x=0, y=0
Limite:
;
Valori private:
pentru x = -1, y(-1) = -1
pentru x = 0, y(0) = 0
pentru x = 1, y(1) = 1
Funcția inversă:

Numător par, n = 4, 6, 8, ...

Proprietățile unei funcții de putere y = x p cu un exponent rațional mai mare de unu: . Unde n = 4, 6, 8, ... este un număr natural par, m = 3, 5, 7 ... este un număr natural impar.

Domeniu: -∞ < x < ∞
Valori multiple: 0 ≤ y< ∞
Paritate: par, y(-x) = y(x)
Monoton:
la x< 0 монотонно убывает
pentru x > 0 crește monoton
Extreme: minim la x = 0, y = 0
Convex: convex în jos
Puncte de întrerupere: Nu
Puncte de intersecție cu axele de coordonate: x=0, y=0
Limite:
;
Valori private:
pentru x = -1, y(-1) = 1
pentru x = 0, y(0) = 0
pentru x = 1, y(1) = 1
Funcția inversă:

Numitorul indicatorului fracționar este par

Fie numitorul exponentului fracționar par: m = 2, 4, 6, ... . În acest caz, funcția de putere x p nu este definită pentru valorile negative ale argumentului. Proprietățile sale coincid cu cele ale unei funcții de putere cu un exponent irațional (vezi secțiunea următoare).

Funcția de putere cu exponent irațional

Se consideră o funcție de putere y = x p cu un exponent irațional p . Proprietățile unor astfel de funcții diferă de cele considerate mai sus prin faptul că nu sunt definite pentru valorile negative ale argumentului x. Pentru valorile pozitive ale argumentului, proprietățile depind numai de valoarea exponentului p și nu depind de dacă p este întreg, rațional sau irațional.


y = x p pentru diferite valori ale exponentului p.

Funcția de putere cu p. negativ< 0

Domeniu: x > 0
Valori multiple: y > 0
Monoton: scade monoton
Convex: convex în jos
Puncte de întrerupere: Nu
Puncte de intersecție cu axele de coordonate: Nu
Limite: ;
valoare privată: Pentru x = 1, y(1) = 1 p = 1

Funcția de putere cu exponent pozitiv p > 0

Indicatorul este mai mic de unu 0< p < 1

Domeniu: x ≥ 0
Valori multiple: y ≥ 0
Monoton: crește monoton
Convex: convex în sus
Puncte de întrerupere: Nu
Puncte de intersecție cu axele de coordonate: x=0, y=0
Limite:
Valori private: Pentru x = 0, y(0) = 0 p = 0 .
Pentru x = 1, y(1) = 1 p = 1

Indicatorul este mai mare decât un p > 1

Domeniu: x ≥ 0
Valori multiple: y ≥ 0
Monoton: crește monoton
Convex: convex în jos
Puncte de întrerupere: Nu
Puncte de intersecție cu axele de coordonate: x=0, y=0
Limite:
Valori private: Pentru x = 0, y(0) = 0 p = 0 .
Pentru x = 1, y(1) = 1 p = 1

Referinte:
ÎN. Bronstein, K.A. Semendyaev, Manual de matematică pentru ingineri și studenți ai instituțiilor de învățământ superior, Lan, 2009.

Vezi si:

Pentru comoditatea luării în considerare a unei funcții de putere, vom lua în considerare 4 cazuri separate: o funcție de putere cu un exponent natural, o funcție de putere cu un exponent întreg, o funcție de putere cu un exponent rațional și o funcție de putere cu un exponent irațional.

Funcție de putere cu exponent natural

Pentru început, introducem conceptul de diplomă cu exponent natural.

Definiția 1

Puterea unui număr real $a$ cu exponent natural $n$ este un număr egal cu produsul $n$ factori, fiecare dintre care este egal cu numărul $a$.

Poza 1.

$a$ este baza gradului.

$n$ - exponent.

Luați în considerare acum o funcție de putere cu un exponent natural, proprietățile și graficul acesteia.

Definiția 2

$f\left(x\right)=x^n$ ($n\in N)$ se numește o funcție de putere cu exponent natural.

Pentru mai multă comoditate, luați în considerare separat funcția de putere cu exponent par $f\left(x\right)=x^(2n)$ și funcția de putere cu exponent impar $f\left(x\right)=x^(2n- 1)$ ($n\în N)$.

Proprietățile unei funcții de putere cu exponent natural par

    $f\left(-x\right)=((-x))^(2n)=x^(2n)=f(x)$ este o funcție pară.

    Domeniu -- $ \

    Funcția scade cu $x\in (-\infty ,0)$ și crește cu $x\in (0,+\infty)$.

    $f("")\left(x\right)=(\left(2n\cdot x^(2n-1)\right))"=2n(2n-1)\cdot x^(2(n-1) ))\ge 0$

    Funcția este convexă pe întregul domeniu al definiției.

    Comportament la sfârșitul domeniului de aplicare:

    \[(\mathop(lim)_(x\to -\infty ) x^(2n)\ )=+\infty \] \[(\mathop(lim)_(x\to +\infty ) x^( 2n)\ )=+\infty \]

    Grafic (Fig. 2).

Figura 2. Graficul funcției $f\left(x\right)=x^(2n)$

Proprietățile unei funcții de putere cu exponent natural impar

    Domeniul definiției sunt toate numerele reale.

    $f\left(-x\right)=((-x))^(2n-1)=(-x)^(2n)=-f(x)$ este o funcție impară.

    $f(x)$ este continuu pe întregul domeniu al definiției.

    Gama sunt toate numere reale.

    $f"\left(x\right)=\left(x^(2n-1)\right)"=(2n-1)\cdot x^(2(n-1))\ge 0$

    Funcția crește pe întregul domeniu de definiție.

    $f\left(x\right)0$, pentru $x\in (0,+\infty)$.

    $f(""\left(x\right))=(\left(\left(2n-1\right)\cdot x^(2\left(n-1\right))\right))"=2 \left(2n-1\right)(n-1)\cdot x^(2n-3)$

    \ \

    Funcția este concavă pentru $x\in (-\infty ,0)$ și convexă pentru $x\in (0,+\infty)$.

    Grafic (Fig. 3).

Figura 3. Graficul funcției $f\left(x\right)=x^(2n-1)$

Funcția de putere cu exponent întreg

Pentru început, introducem conceptul de grad cu un exponent întreg.

Definiția 3

Gradul unui număr real $a$ cu exponent întreg $n$ este determinat de formula:

Figura 4

Luați în considerare acum o funcție de putere cu un exponent întreg, proprietățile și graficul acesteia.

Definiția 4

$f\left(x\right)=x^n$ ($n\in Z)$ se numește o funcție de putere cu exponent întreg.

Dacă gradul este mai mare decât zero, atunci ajungem la cazul unei funcții de putere cu exponent natural. Ne-am gândit deja mai sus. Pentru $n=0$ obținem o funcție liniară $y=1$. Lăsăm considerația sa în seama cititorului. Rămâne de luat în considerare proprietățile unei funcții de putere cu un exponent întreg negativ

Proprietățile unei funcții de putere cu un exponent întreg negativ

    Domeniul de aplicare este $\left(-\infty ,0\right)(0,+\infty)$.

    Dacă exponentul este par, atunci funcția este pară; dacă este impar, atunci funcția este impară.

    $f(x)$ este continuu pe întregul domeniu al definiției.

    Interval de valori:

    Dacă exponentul este par, atunci $(0,+\infty)$, dacă este impar, atunci $\left(-\infty ,0\right)(0,+\infty)$.

    Dacă exponentul este impar, funcția scade cu $x\in \left(-\infty ,0\right)(0,+\infty)$. Pentru un exponent par, funcția scade cu $x\in (0,+\infty)$. și crește cu $x\în \left(-\infty ,0\right)$.

    $f(x)\ge 0$ pe întregul domeniu

O funcție de putere este o funcție de forma y=x n (se citește ca y este egal cu x cu puterea lui n), unde n este un număr dat. Cazuri particulare de funcții de putere sunt funcții de forma y=x, y=x 2 , y=x 3 , y=1/x și multe altele. Să vorbim mai multe despre fiecare dintre ele.

Funcția liniară y=x 1 (y=x)

Graficul este o linie dreaptă care trece prin punctul (0; 0) la un unghi de 45 de grade față de direcția pozitivă a axei Ox.

Graficul este prezentat mai jos.

Proprietățile de bază ale unei funcții liniare:

  • Funcția este în creștere și este definită pe axa numărului întreg.
  • Nu are valori maxime și minime.

Funcția pătratică y=x 2

Graficul unei funcții pătratice este o parabolă.

Proprietățile de bază ale unei funcții pătratice:

  • 1. Pentru x=0, y=0 și y>0 pentru x0
  • 2. Funcția pătratică atinge valoarea minimă la vârf. Ymin la x=0; De asemenea, trebuie remarcat faptul că valoarea maximă a funcției nu există.
  • 3. Funcția scade pe interval (-∞; 0] și crește pe intervalul )